[1] 1房建成, 陈萌, 李海涛. 磁悬浮控制力矩陀螺框架系统谐波减速器的迟滞建模[J]. 光学 精密工程, 2014, 22(11): 2950-2958. doi: 10.3788/ope.20142211.2950FANGJ CH, CHENM, LIH T. Hysteresis modeling for harmonic drive in DGMSCMG gimbal system[J]. Opt. Precision Eng., 2014, 22(11): 2950-2958. (in Chinese). doi: 10.3788/ope.20142211.2950
[2] 2党选举, 王凯利, 姜辉, 等. 工业机器人谐波减速器迟滞特性的神经网络建模[J]. 光学 精密工程, 2019, 27(3): 694-701. doi: 10.3788/OPE.20192703.0694DANGX J, WANGK L, JIANGH, et al. Neural network modeling of hysteresis for harmonic drive in industrial robots[J]. Opt. Precision Eng., 2019, 27(3): 694-701. (in Chinese). doi: 10.3788/OPE.20192703.0694
[3] 3李致富, 黄楠, 钟云, 等. 压电驱动器迟滞非线性的分数阶建模及实验验证[J]. 光学 精密工程, 2020, 28(5): 1124-1131.LIZH F, HUANGN, ZHONGY, et al. Fractional order modeling and experimental verification of hysteresis nonlinearities in piezoelectric actuators[J]. Opt. Precision Eng., 2020, 28(5): 1124-1131. (in Chinese)
[4] 4杨晓京, 胡俊文, 李庭树. 压电微定位台的率相关动态迟滞建模及参数辨识[J]. 光学 精密工程, 2019, 27(3): 610-618. doi: 10.3788/ope.20192703.0610YANGX J, HUJ W, LIT SH. Rate-dependent dynamic hysteresis modeling of piezoelectric micro platform and its parameter identification[J]. Opt. Precision Eng., 2019, 27(3): 610-618. (in Chinese). doi: 10.3788/ope.20192703.0610
[5] 5孙中梁, 崔玉国, 刘康, 等. 采用变间隔阈值PI模型的压电平台前馈控制[J]. 压电与声光, 2017, 39(3): 374-377.SUNZH L, CUIY G, LIUK, et al. Feedforward control of a piezoelectric stage using variable-interval threshold PI model[J]. Piezoelectrics & Acoustooptics, 2017, 39(3): 374-377. (in Chinese)
[6] D AN, H D LI, Y XU et al. Compensation of hysteresis on piezoelectric actuators based on tripartite PI model. Micromachines, 9, 44(2018).
[7] 7刘宽, 赵梓舒, 武文华, 等. 宏纤维复合材料MFC作动器迟滞非线性分析与补偿方法研究[J]. 机械工程学报, 2019, 55(14): 178-185. doi: 10.3901/jme.2019.14.178LIUK, ZHAOZ SH, WUW H, et al. Hysteresis nonlinear analysis and its compensation method of MFC actuator[J]. Journal of Mechanical Engineering, 2019, 55(14): 178-185. (in Chinese). doi: 10.3901/jme.2019.14.178
[8] P V YEKTA, F J HONAR, M N FESHARAKI. Modelling of hysteresis loop and magnetic behaviour of Fe-48Ni alloys using artificial neural network coupled with genetic algorithm. Computational Materials Science, 159, 349-356(2019).
[9] S LI, X J YANG, Y LI et al. Research on modelling of piezoelectric micro-positioning stage based on PI hysteresis model. The Journal of Engineering, 437-441(2019).
[10] 10蔡永根, 崔玉国, 赵余杰, 等. 采用改进PI迟滞模型的压电微夹钳前馈控制[J]. 宁波大学学报(理工版), 2017, 30(6): 53-58. doi: 10.3969/j.issn.1001-5132.2017.06.010CAIY G, CUIY G, ZHAOY J, et al. Feedforward control of a piezoelectric microgripper using improved PI hysteresis model[J]. Journal of Ningbo University (Natural Science & Engineering Edition), 2017, 30(6): 53-58. (in Chinese). doi: 10.3969/j.issn.1001-5132.2017.06.010
[11] K BHORE, S SONDKAR. Identification of Prandtl-ishlinskii hysteresis model and its inverse for varying hysteresis nonlinearities, 69-74(2018).
[12] Y F WANG, R XU, M L ZHOU. Prandtl-ishlinskii modeling for giant magnetostrictive actuator based on internal time-delay recurrent neural network. IEEE Transactions on Magnetics, 54, 1-4(2018).
[13] N ALATAWNEH, MAL JANAIDEH. A frequency-dependent Prandtl-ishlinskii model of hysteresis loop under rotating magnetic fields. IEEE Transactions on Power Delivery, 34, 2263-2265(2019).
[14] 14范伟, 傅雨晨, 于欣妍. 压电陶瓷驱动器的迟滞非线性规律[J]. 光学 精密工程, 2019, 27(8): 1793-1799. doi: 10.3788/ope.20192708.1793FANW, FUY CH, YUX Y. Hysteresis nonlinear law of piezoelectric ceramic actuator[J]. Opt. Precision Eng., 2019, 27(8): 1793-1799. (in Chinese). doi: 10.3788/ope.20192708.1793