[1] B P ABBOTT. Observation of gravitational waves from a binary black hole merger. Physical Review Letters, 116, 061102(2016).
[2] P AMARO-SEOANE, S AOUDIA, S BABAK et al. Low-frequency gravitational-wave science with eLISA/NGO. Classical and Quantum Gravity, 29, 124016(2012).
[3] S KAWAMURA, M ANDO, N SETO et al. The Japanese space gravitational wave antenna: DECIGO. Classical and Quantum Gravity, 28, 094011(2011).
[4] Wenhong RUAN, Chang LIU, Zongkuan GUO et al. The LISA-Taiji network. Nature Astronomy, 4, 108-109(2020).
[5] Jun LUO, Lisheng CHEN, Huizong DUAN et al. TianQin: a space-borne gravitational wave detector. Classical and Quantum Gravity, 33, 035010(2015).
[6] Yungui GONG, Jun LUO, Bin WANG. Concepts and status of Chinese space gravitational wave detection projects. Nature Astronomy, 5, 881-889(2021).
[7] Zhiqiang HU, Pengcheng WANG, Jianfeng DENG et al. The drag-free control design and in-orbit experimental results of “Taiji-1. International Journal of Modern Physics A, 11, 2140019(2021).
[8] Jun LUO, Yanzheng BAI, Lin CAI et al. The first round result from the TianQin-1 satellite. Classical and Quantum Gravity, 37, 185013(2020).
[9] Shufan WU, Qianyun ZHANG, Meilin LIU et al. Key technologies and progress of inertial sensors for space gravitational wave detection. Chinese Space Science and Technology, 43, 1-12(2023).
[10] Ziren LUO, Zongkuan GUO, Gang JIN et al. A brief analysis to Taiji: Science and technology. Results in Physics, 16, 102918(2020).
[11] Qiang LIU, Zaiyuan WANG, Jiehao WANG et al. Research progress on low-noise laser for space-based gravitational wave detector (invited). Acta Photonica Sinica, 51, 0751409(2022).
[12] Jiankang PENG, Liufeng LI, Lisheng CHEN et al. A spaceborne neodymium-doped yttrium aluminum garnet laser with nonplanar-ring-oscillator configuration. International Journal of Modern Physics A, 11, 2140007(2021).
[13] Guangwei SUN, Guofeng XIN, Ren ZHU et al. Compact all fiber coupled nonplanar ring oscillator solid-state laser. Chinese Journal of Lasers, 49, 1301002(2022).
[14] Fan LI, Jiawei WANG, Zichao GAO et al. Laser intensity noise evaluation system for space-based gravitational wave detection. Acta Physica Sinica, 71, 209501(2022).
[15] Li'ang ZHENG, Fan LI, Jiawei WANG et al. Low noise photoelectric detection technology for laser intensity noise suppression in mHz band. Acta Photonica Sinica, 52, 0552220(2023).
[16] Yuqiong LI, Chenyu WANG, Luyu WANG et al. A laser interferometer prototype with pico-meter measurement precision for taiji space gravitational wave detection mission in China. Microgravity Science and Technology, 32, 331-338(2020).
[17] Hang LIU. The research on the numerical simulation of arm-locking and phase-locking control for space gravitational wave detection(2021).
[18] Hang LIU, Yuqiong LI, Gang JIN. Numerical simulations of arm‑locking for Taiji space gravitational waves detection. Microgravity Science and Technology, 33, 41(2021).
[19] Luyu WANG, Yuqiong LI, Rong CAI. Noise suppression of laser jitter in space laser interferometer. Chinese Optics, 14, 1426-1434(2021).
[20] Xiaokang LI, Heshan LIU, Pengzhan WU et al. Proof-of-principle experimental demonstration of time-delay-interferometry for Chinese space-borne gravitational wave detection missions. Microgravity Science and Technology, 34, 64(2022).
[21] R W P DREVER, J L HALL, F V KOWALSKI et al. Laser phase and frequency stabilization using an optical resonator. Applied Physics B, 31, 97-105(1983).
[22] B S SHEARD, M B GRAY, D MCCLELLAND et al. Laser frequency stabilization by locking to a LISA arm. Physics Letters A, 320, 9-21(2003).
[23] Gang WANG, Weitou NI, Wenbiao HAN et al. Algorithm for time-delay interferometry numerical simulation and sensitivity investigation. Physical Review D, 103, 122006(2021).
[24] Weitou NI, J T SHY, S M TSENG et al. Progress in mission concept study and laboratory development for the ASTROD (Astrodynamical Space Test of Relativity using Optical Devices), 3116, 105-116(1997).
[25] M TINTO, D A SHADDOCK, J SYLVESTRE et al. Implementation of time-delay interferometry for LISA. Physical Review D, 67, 122003(2003).
[26] D A SHADDOCK, B WARE, R E SPERO et al. Postprocessed time-delay interferometry for LISA. Physical Review D, 70, 081101R(2004).
[27] G D VINE, B WARE, K MCKENZIE et al. Experimental demonstration of time-delay interferometry for the laser interferometer space antenna. Physical Review Letters, 104, 211103(2010).
[28] J SYLVESTRE. Simulations of laser locking to a LISA arm. Physical Review D, 70, 102002(2004).
[29] M HERZ. Active laser frequency stabilization and resolution enhancement of interferometers for the measurement of gravitational waves in space. Optical Engineering, 44, 090505(2005).
[30] B S SHEARD, M B GRAY, D A SHADDOCK et al. Laser frequency noise suppression by arm-locking in LISA: progress towards a bench-top demonstration. Classical and Quantum Gravity, 22, S221-S226(2005).
[31] A SUTTON, D A SHADDOCK. Laser frequency stabilization by dual arm locking for LISA. Physical Review D, 78, 082001(2008).
[32] K MCKENZIE, R E SPERO, D A SHADDOCK. Performance of arm locking in LISA. Physical Review D, 80, 102003(2009).
[33] Hanzhong WU, Jun KE, Panpan WANG et al. Arm locking using laser frequency comb. Optics Express, 30, 8027-8048(2022).
[34] Jun KE, Tongcheng LU, Zeyang LI et al. Suppression of laser phase noise by using updated common arm locking. Optics Communications, 545, 129662(2023).
[35] Yi ZHANG, Mingzhe LI, Tong WANG et al. Transient analysis of the arm locking controller. Physical Review D, 109, 042006(2024).
[36] LISA frequency control study team. LISA frequency control white paper(2009).