• Matter and Radiation at Extremes
  • Vol. 6, Issue 3, 034001 (2021)
F. B. Rosmej1、2、3、4, V. A. Astapenko3, and E. S. Khramov3
Author Affiliations
  • 1Sorbonne University, Faculty of Science and Engineering, UMR 7605, Case 128, 4 Place Jussieu, F-75252 Paris Cedex 05, France
  • 2LULI, Ecole Polytechnique, CEA, CNRS, Laboratoire pour l’Utilisation des Lasers Intenses, Physique Atomique dans les Plasmas Denses, F-91128 Palaiseau, France
  • 3Moscow Institute of Physics and Technology—MIPT, Institutskii per. 9, Dolgoprudnyi 141700, Russia
  • 4National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe sh. 31, Moscow 115409, Russia
  • show less
    DOI: 10.1063/5.0046040 Cite this Article
    F. B. Rosmej, V. A. Astapenko, E. S. Khramov. XFEL and HHG interaction with matter: Effects of ultrashort pulses and random spikes[J]. Matter and Radiation at Extremes, 2021, 6(3): 034001 Copy Citation Text show less
    References

    [1] G.R?pke, W.Ebeling, W.-D.Kraeft, D.Kremp. Quantum Statistics of Charged Particle Systems(1986).

    [2] S.Ichimaru. Statistical Plasmas Physics Vol. II: Condensed Plasmas(2004).

    [3] R.Drake. High-Energy-Density Physics(2006).

    [4] F.Graziani, S. B.Trickey, R.Redmer, M. P.Desjarlais. Frontiers and Challenges in Warm Dense Matter(2014).

    [5] S.Mazevet, A.Ravasio, M.Harmand et al. X-ray absorption spectroscopy of iron at multimegabar pressures in laser shock experiments. Phys. Rev. B, 92, 024108(2015).

    [6] F.Dorchies, V.Recoules, F.Festa et al. X-ray absorption K-edge as a diagnostic of the electronic temperature in warm dense aluminum. Phys. Rev. B, 92, 085117(2015).

    [7] S.Zhang, S.Zhao, W.Kang et al. Link between K absorption edges and thermodynamic properties of warm dense plasmas established by an imporved first-principles method. Phys. Rev. B, 93, 115114(2016).

    [8] X.Zhou, Y.Lei, R.Cheng et al. Warm dense matter research at HIAF. Matter Radiat. Extremes, 3, 85(2018).

    [9] R. W.Lee, H.-K.Chung, S. J.Moon et al. Finite temperature dense matter studies on next generation light sources. J. Opt. Soc. Am. B, 20, 770(2003).

    [10] D.Riley. Generation and characterisation of warm dense matter with intense lasers. Plasma Phys. Controlled Fusion, 60, 014033(2017).

    [11] L.Antonelli, O.Renner, D.Batani, M.?míd. Suprathermal electron production in laser-irradiated Cu targets characterized by combined methods of x-ray imaging and spectroscopy. Plasma Phys. Controlled Fusion, 58, 075007(2016).

    [12] F. B.Rosmej, O.Renner. Challenges of x-ray spectroscopy in investigations of matter under extreme conditions. Matter Radiat. Extremes, 4, 024201(2019).

    [13] A.Colaitis, O.Renner, M.Smid et al. Characterization of suprathermal electrons inside laser accelerated solid density matter via axially-resolved Kα-emission. Nat. Commun., 10, 4212(2019).

    [14] S.Varro. Free Electron Lasers(2012).

    [15] X-ray FEL LCLS(2020).

    [16] X-ray FEL EU-XFEL(2020).

    [17] X-ray FEL SACLA(2020).

    [18] N.Kabachnik, O.Gorobtsov, U.Lorenz et al. Theoretical study of electronic damage in single-particle imaging experiments at x-ray free-electron lasers for pulse durations from 0.1 to 10 fs. Phys. Rev. E, 91, 062712(2015).

    [19] A. G.de la Varga, F.de Gaufridy, P.Velarde et al. Non-Maxwellian electron distributions in time-dependent simulations of low-Z materials illuminated by a high-intensity X-ray laser. High Energy Density Phys., 9, 542(2013).

    [20] S. J.Rose. The effect of a radiation field on exciation and ionisation in non-LTE high energy density plasmas. High Energy Density Phys., 5, 23(2009).

    [21] H.-K.Chung, M. H.Chen, W. L.Morgan et al. FLYCHK: Generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements. High Energy Density Phys., 1, 3(2005).

    [22] J.Yuan, C.Gao, J.Zeng. Evolution dynamics of charge state distribution in neon interaction with x-ray pulses of variant intensities and durations. High Energy Density Phys., 14, 52(2015).

    [23] L.Young, R.Santra, S.-K.Son. Impact of hollow-atom formation on coherent x-ray scattering at high intensity. Phys. Rev. A, 83, 033402(2011).

    [24] O.Peyrusse. Coupling of detailed configuration kinetics and hydrodynamics in materials submitted to x-ray free-electron-laser radiation. Phys. Rev. E, 86, 036403(2012).

    [25] M.Yurkov, E.Schneidmiller. Photon beam properties at the European XFEL. Technical Report No. XFEL.EU TR-2011-006(2011).

    [26] T.Tanaka. Proposal to generate an isolated monocycle x-ray pulse by counteracting the slippage effect in free-electron lasers. Phys. Rev. Lett., 114, 044801(2015).

    [27] T.Tanaka, Y.Kida, R.Kinjo. Synthesizing high-order harmonics to generate a sub-cycle pulse in free-electron lasers. Appl. Phys. Lett., 109, 151107(2016).

    [28] E.Saldin, L.Samoylova, G.Geloni et al. Coherence properties of the European XFEL. New J. Phys., 12, 035021(2010).

    [29] L.Samoylova, S.Roling, H.Zacharias et al. Time-dependent wave front propagation simulation of a hard x-ray split-and-delay unit: Towards a measurement of the temporal coherence properties of x-ray free electron lasers. Phys. Rev. Spec. Top.--Accel. Beams, 17, 110705(2014).

    [30] B.Li. X-ray photon temporal diagnostics for the European XFEL. Technical Report No. XFEL.EU TN-2012-002-01(2012).

    [31] K.-J.Kim, Z.Huang. Review of x-ray free-electron laser theory. Phys. Rev. Spec. Top.--Accel. Beams, 10, 034801(2007).

    [32] K.Zhao, M.Chini, Q.Zhang et al. Tailoring a 67 attosecond pulse through advantageous phase-mismatch. Opt. Lett., 37, 3891(2012).

    [33] E.Fermi. Über die theorie des stosses zwischen atomen und elektrisch geladenen teilchen. Z. Phys., 29, 35(1924).

    [34] V. A.Astapenko, V. A.Astapenko, F. B.Rosmej, V. S.Lisitsa. Generalized scaling laws for ionization of atomic states by ultra-short electromagnetic pulses. J. Phys. B: At., Mol. Opt. Phys., 49, 025602(2016).

    [35] R. G.Newton. Optical theorem and beyond. Am. J. Phys., 44, 639-642(1976).

    [36] V. A.Astapenko, F. B.Rosmej, V. S.Lisitsa. XUV and x-ray elastic scattering of attosecond electromagnetic pulses on atoms. J. Phys. B: At., Mol. Opt. Phys., 50, 235601(2017).

    [37] E. M.Gullikson, J. C.Davis, B. L.Henke. X-ray interactions: Photoabsorption, scattering, transmission, and reflection at E = 50-30, 000 eV, Z = 1-92. At. Data Nucl. Data Tables, 54, 181-342(1993).

    [38] Q.Lin, J.Zheng, W.Becker. Subcycle pulsed focused vector beams. Phys. Rev. Lett., 97, 253902(2006).

    [39] L. A.Vainshtein, F. B.Rosmej, V. A.Astapenko, V. S.Lisitsa. Statistical and quantum photoionization cross sections in plasmas: Analytical approaches for any configurations including inner shells. Matter Radiat. Extremes, 5, 064202(2020).

    [40] T.Katayama, Y.Inubushi, Y.Obara et al. Femtosecond x-ray absorption spectroscopy with hard x-ray free electron laser. Appl. Phys. Lett., 103, 131105(2013).

    [41] T.Pfeifer, S.Düsterer, Y.Jiang et al. Partial-coherence method to model experimental free-electron laser pulse statistics. Opt. Lett., 35, 3441(2010).

    [42] XUV-FEL FLASH(2020).

    [43] D.Attwood, A.Thompson, E.Gullikson et al. X-Ray Data Booklet(2009).

    [44] N.Mermin, N.Ashcroft. Solid State Physics, p.16(1976).

    [45] F. B.Rosmej, V. S.Lisitsa, V. A.Astapenko. Plasma Atomic Physics, Springer Series on Atomic, Optical and Plasma Physics(2021).

    F. B. Rosmej, V. A. Astapenko, E. S. Khramov. XFEL and HHG interaction with matter: Effects of ultrashort pulses and random spikes[J]. Matter and Radiation at Extremes, 2021, 6(3): 034001
    Download Citation