• Photonics Research
  • Vol. 6, Issue 10, C36 (2018)
Jinho Lee, Yoontaek Kim, Kyungtaek Lee, and Ju Han Lee*
Author Affiliations
  • School of Electrical and Computer Engineering, University of Seoul, Seoul 02504, South Korea
  • show less
    DOI: 10.1364/PRJ.6.000C36 Cite this Article Set citation alerts
    Jinho Lee, Yoontaek Kim, Kyungtaek Lee, Ju Han Lee. Femtosecond mode-locking of a fiber laser using a CoSb3-skutterudite-based saturable absorber[J]. Photonics Research, 2018, 6(10): C36 Copy Citation Text show less
    References

    [1] U. Keller. Recent developments in compact ultrafast lasers. Nature, 424, 831-838(2003).

    [2] K. Sugioka, Y. Cheng. Ultrafast lasers—reliable tools for advanced materials processing. Light Sci. Appl., 3, e149(2014).

    [3] M. Fermann, I. Hartl. Ultrafast fiber laser technology. IEEE J. Sel. Top. Quantum Electron., 15, 191-206(2009).

    [4] U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, J. A. der Au. Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE J. Sel. Top. Quantum Electron., 2, 435-453(1996).

    [5] S. Y. Set, H. Yaguchi, Y. Tanaka, M. Jablonski. Laser mode locking using a saturable absorber incorporating carbon nanotubes. J. Lightwave Technol., 22, 51-56(2004).

    [6] Y.-W. Song, S. Yamashita, C. S. Goh, S. Y. Set. Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers. Opt. Lett., 32, 148-150(2007).

    [7] M. Jung, J. Koo, Y. M. Chang, P. Debnath, Y.-W. Song, J. H. Lee. An all fiberized, 1.89-μm Q-switched laser employing carbon nanotube evanescent field interaction. Laser Phys. Lett., 9, 669-673(2012).

    [8] K. Kieu, F. W. Wise. Soliton thulium-doped fiber laser with carbon nanotube saturable absorber. IEEE Photon. Technol. Lett., 21, 128-130(2009).

    [9] M. A. Chernysheva, A. A. Krylov, P. G. Kryukov, N. R. Arutyunyan, A. S. Pozharov, E. D. Obraztsova, E. M. Dianov. Thulium-doped mode-locked all-fiber laser based on NALM and carbon nanotube saturable absorber. Opt. Express, 20, B124-B130(2012).

    [10] Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yang, Z. X. Shen, K. P. Loh, D. Y. Tang. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater., 19, 3077-3083(2009).

    [11] Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari. Graphene mode-locked ultrafast laser. ACS Nano, 4, 803-810(2010).

    [12] Y.-W. Song, S.-Y. Jang, W.-S. Han, M.-K. Bae. Graphene mode-lockers for fiber lasers functioned with evanescent field interaction. Appl. Phys. Lett., 96, 051122(2010).

    [13] A. Martinez, Z. Sun. Nanotube and graphene saturable absorber for fibre lasers. Nat. Photonics, 7, 842-845(2013).

    [14] J. Ma, G. Q. Xie, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, D. Y. Tang. Graphene mode-locked femtosecond laser at 2  μm wavelength. Opt. Lett., 37, 2085-2087(2012).

    [15] G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, K. M. Abramski. Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber. Opt. Express, 21, 12797-12802(2013).

    [16] J. Xu, J. Liu, S. Wu, Q.-H. Yang, P. Wang. Graphene oxide mode-locked femtosecond erbium-doped fiber lasers. Opt. Express, 20, 15474-15480(2012).

    [17] M. Jung, J. Koo, P. Debnath, Y.-W. Song, J. H. Lee. A mode-locked 1.91  μm fiber laser based on interaction between graphene oxide and evanescent field. Appl. Phys. Express, 5, 112702(2012).

    [18] M. Jung, J. Koo, J. Park, Y.-W. Song, Y. M. Jhon, K. Lee, S. Lee, J. H. Lee. Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber. Opt. Express, 21, 20062-20072(2013).

    [19] J. Lee, J. Koo, P. Debnath, Y.-W. Song, J. H. Lee. A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber. Laser Phys. Lett., 10, 035103(2013).

    [20] S. Ko, J. Lee, J. Koo, B. S. Joo, M. Gu, J. H. Lee. Chemical wet etching of an optical fiber using a hydrogen fluoride-free solution for a saturable absorber based on the evanescent field interaction. J. Lightwave Technol., 34, 3776-3784(2016).

    [21] G.-R. Lin, Y.-C. Lin. Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser. Laser Phys. Lett., 8, 880-886(2011).

    [22] Y.-H. Lin, G.-R. Lin. Free-standing nano-scale graphite saturable absorber for passively mode-locked erbium doped fiber ring laser. Laser Phys. Lett., 9, 398-404(2012).

    [23] J. Lee, J. Lee, J. Koo, J. H. Lee. Graphite saturable absorber based on the pencil-sketching method for Q-switching of an erbium fiber laser. Appl. Opt., 55, 303-309(2016).

    [24] F. Bernard, H. Zhang, S. P. Gorza, P. Emplit. Towards mode-locked fiber laser using topological insulators. Nonlinear Photonics, NTh1A.5(2012).

    [25] C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, D. Tang. Ultra-short pulse generation by a topological insulator based saturable absorber. Appl. Phys. Lett., 101, 211106(2012).

    [26] Y. Chen, C. Zhao, H. Huang, S. Chen, P. Tang, Z. Wang, S. Lu, H. Zhang, S. Wen, D. Tang. Self-assembled topological insulator: Bi2Se3 membrane as a passive Q-switcher in an erbium-doped fiber laser. J. Lightwave Technol., 31, 2857-2863(2013).

    [27] H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, J. Wang. Topological insulator as an optical modulator for pulsed solid-state lasers. Laser Photon. Rev., 7, L77-L83(2013).

    [28] J. Lee, J. Koo, Y. M. Jhon, J. H. Lee. A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator. Opt. Express, 22, 6165-6173(2014).

    [29] M. Jung, J. Lee, J. Koo, J. Park, Y.-W. Song, K. Lee, S. Lee, J. H. Lee. A femtosecond pulse fiber laser at 1935  nm using a bulk-structured Bi2Te3 topological insulator. Opt. Express, 22, 7865-7874(2014).

    [30] J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, K. Grodecki, K. M. Abramski. Mode-locking in Er-doped fiber laser based on mechanically exfoliated Sb2Te3 saturable absorber. Opt. Mater. Express, 4, 1-6(2014).

    [31] H. Liu, X.-W. Zheng, M. Liu, N. Zhao, A.-P. Luo, Z.-C. W.-C. Xu, H. Zhang, C.-J. Zhao, S.-C. Wen. Femtosecond pulse generation from a topological insulator mode-locked fiber laser. Opt. Express, 22, 6868-6873(2014).

    [32] J. Lee, J. Lee, J. Koo, H. Chung, J. H. Lee. Linearly polarized, Q-switched, erbium-doped fiber laser incorporating a bulk-structured bismuth telluride/polyvinyl alcohol saturable absorber. Opt. Eng., 55, 076109(2016).

    [33] H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, K. P. Loh. Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics. Opt. Express, 22, 7249-7260(2014).

    [34] S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, J. Wang. Broadband few-layer MoS2 saturable absorbers. Adv. Mater., 26, 3538-3544(2014).

    [35] K. Wu, X. Zhang, J. Wang, J. Chen. 463-MHz fundamental mode-locked fiber laser based on few-layer MoS2 saturable absorber. Opt. Lett., 40, 1374-1377(2015).

    [36] R. I. Woodward, E. J. R. Kelleher, R. C. T. Howe, G. Hu, F. Torrisi, T. Hasan, S. V. Popov, J. R. Taylor. Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2). Opt. Express, 22, 31113-31122(2014).

    [37] D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, J. Zhao. WS2 mode-locked ultrafast fiber laser. Sci. Rep., 5, 7965(2015).

    [38] M. Jung, J. Lee, J. Park, J. Koo, Y. M. Jhon, J. H. Lee. Mode-locked, 1.94-μm, all-fiberized laser using WS2 based evanescent field interaction. Opt. Express, 23, 19996-20006(2015).

    [39] P. Yan, A. Liu, Y. Chen, H. Chen, S. Ruan, C. Guo, S. Chen, I. L. Li, H. Yang, J. Hu, G. Cao. Microfiber-based WS2-film saturable absorber for ultra-fast photonics. Opt. Mater. Express, 5, 479-489(2015).

    [40] J. Lee, J. Park, J. Koo, Y. M. Jhon, J. H. Lee. Harmonically mode-locked femtosecond fiber laser using non-uniform, WS2-particle deposited side-polished fiber. J. Opt., 18, 035502(2016).

    [41] B. Chen, X. Zhang, K. Wu, H. Wang, J. Wang, J. Chen. Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. Opt. Express, 23, 26723-26737(2015).

    [42] R. I. Woodward, R. C. T. Howe, T. H. Runcorn, G. Hu, F. Torrisi, E. J. R. Kelleher, T. Hasan. Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and Tm-doped fiber. Opt. Express, 23, 20051-20061(2015).

    [43] J. Koo, J. Park, J. Lee, Y. M. Jhon, J. H. Lee. Femtosecond harmonic mode-locking of a fiber laser at 3.27  GHz using a bulk-like, MoSe2-based saturable absorber. Opt. Express, 24, 10575-10589(2016).

    [44] D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, J. Zhao. Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets. Sci. Rep., 6, 23583(2016).

    [45] J. Lee, J. Koo, J. Lee, Y. M. Jhon, J. H. Lee. All-fiberized, femtosecond laser at 1912  nm using a bulk-like MoSe2 saturable absorber. Opt. Mater. Express, 7, 2968-2979(2017).

    [46] D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, J. Zhao. Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets. Small, 12, 1489-1497(2016).

    [47] J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, J. H. Lee. Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking. Adv. Funct. Mater., 26, 7454-7461(2016).

    [48] T. Jiang, Y. Xu, Q. Tian, L. Liu, Z. Kang, R. Yang, G. Qin, W. Qin. Passively Q-switching induced by gold nanocrystals. Appl. Phys. Lett., 101, 151122(2012).

    [49] Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, W. P. Qin. Gold nanorod saturable absorber for passive mode-locking at 1  μm wavelength. Laser Phys. Lett., 11, 035102(2014).

    [50] X.-D. Wang, Z.-C. Luo, H. Liu, M. Liu, A.-P. Luo, W.-C. Xu. Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser. Appl. Phys. Lett., 105, 161107(2014).

    [51] J. Koo, J. Lee, W. Shin, J. H. Lee. Large energy, all-fiberized Q-switched pulse laser using a GNRs/PVA saturable absorber. Opt. Mater. Express, 5, 1859-1867(2015).

    [52] Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, W. P. Qin. Mode-locked thulium-doped fiber laser at 1982  nm by using a gold nanorods saturable absorber. Laser Phys. Lett., 12, 045105(2015).

    [53] J. Lee, J. Koo, J. Lee, J. H. Lee. End-to-end self-assembly of gold nanorods in water solution for absorption enhancement at a 1-to-2  μm band for a broadband saturable absorber. J. Lightwave Technol., 34, 5250-5257(2016).

    [54] Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, D. Fan. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation. Opt. Express, 23, 12823-12833(2015).

    [55] Z.-C. Luo, M. Liu, Z.-N. Guo, X.-F. Jiang, A.-P. Luo, C.-J. Zhao, X.-F. Yu, W.-C. Xu, H. Zhang. Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser. Opt. Express, 23, 20030-20039(2015).

    [56] K. Park, J. Lee, Y. T. Lee, W.-K. Choi, J. H. Lee, Y.-W. Song. Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction. Ann. Phys., 527, 770-776(2015).

    [57] J. Sotor, G. Sobon, M. Kowalczyk, W. Macherzynski, P. Paletko, K. M. Abramski. Ultrafast thulium-doped fiber laser mode locked with black phosphorus. Opt. Lett., 40, 3885-3888(2015).

    [58] Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, Y. M. Jhon. Metallic MXene saturable absorber for femtosecond mode-locked lasers. Adv. Mater., 29, 1702496(2017).

    [59] Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, S. Lu. Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability. 2D Mater., 4, 045010(2017).

    [60] L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Pronraj, B. Dong, Y. Xiang, F. Xing, D. Fan, H. Zhang. Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability. Laser Photon. Rev., 12, 1870012(2017).

    [61] J. Lee, B.-K. Yu, Y. I. Jhon, J. Koo, S. J. Kim, Y. M. Jhon, J. H. Lee. Filled skutterudites for broadband saturable absorbers. Adv. Opt. Mater., 5, 1700096(2017).

    [62] D. T. Morelli, T. Caillat, J.-P. Fleurial, A. Borshchevsky, J. Vandersande, B. Chen, C. Uher. Low-temperature transport properties of p-type CoSb3. Phys. Rev. B, 51, 9622-9628(1995).

    [63] J. Yang, M. G. Endres, G. P. Meisner. Valence of Cr in skutterudites: electrical transport and magnetic properties of Cr-doped CoSb3. Phys. Rev. B, 66, 014436(2002).

    [64] G. Rogl, P. Rogl. Skutterudite, a most promising group of thermoelectric materials. Curr. Opin. Green Sustain. Chem., 4, 50-57(2017).

    [65] V. Keppens, D. Mandrus, B. C. Sales, B. C. Chakoumakos, P. Dai, R. Coldea, M. B. Maple, D. A. Gajewski, E. J. Freeman, S. Bennington. Localized vibrational modes in metallic solids. Nature, 395, 876-878(1998).

    [66] Y. I. Jhon, J. Lee, Y. M. Jhon, J. H. Lee. Topological insulators for mode-locking of 2-μm fiber lasers. IEEE J. Sel. Top. Quantum Electron., 24, 1102208(2018).

    [67] T. Caillat, A. Borshchevsky, J.-P. Fleurial. Properties of single crystalline semiconducting CoSb3. J. Appl. Phys., 80, 4442-4449(1996).

    [68] V. Pardo, J. C. Smith, W. E. Pickett. Linear bands, zero-momentum Weyl semimetal, and topological transition in skutterudite-structure pnictides. Phys. Rev. B, 85, 214531(2012).

    [69] B. Yan, L. Müchler, X.-L. Qi, S.-C. Zhang, C. Felser. Topological insulators in filled skutterudites. Phys. Rev. B, 85, 165125(2012).

    [70] M. Yang, W.-M. Liu. The d-p band-inversion topological insulator in bismuth-based skutterudites. Sci. Rep., 4, 5131(2014).

    [71] M. Z. Hasan, C. L. Kane. Colloquium: topological insulators. Rev. Mod. Phys., 82, 3045-3067(2010).

    [72] J. L. Feldman, D. J. Singh. Lattice dynamics of skutterudites: first-principles and model calculations for CoSb3. Phys. Rev. B, 53, 6273-6282(1996).

    [73] X. Su, H. Li, G. Wang, H. Chi, X. Zhou, X. Tang, Q. Zhang, C. Uher. Structure and transport properties of double-doped CoSb2.75Ge0.25−xTex (x = 0.125–0.20) with in situ nanostructure. Chem. Mater., 23, 2948-2955(2011).

    [74] L. X. Liu, H. Liu, J. Y. Wang, X. B. Hu, S. R. Zhao, H. D. Jiang, Q. J. Huang, H. H. Wang, Z. F. Li. Raman spectroscopy investigation of partially filled skutterudite. Chem. Phys. Lett., 347, 373-377(2001).

    [75] M. Bala, C. Pannu, S. Gupta, T. S. Tripathi, S. K. Tripathi, K. Asokan, D. K. Aasthi. Phase evolution and electrical properties of Co-Sb alloys fabricated from Co/Sb bilayers by thermal annealing and ion beam mixing. Phys. Chem. Chem. Phys., 17, 24427-24437(2015).

    [76] D. W. Zeng, C. S. Xie, B. L. Zhu, W. L. Song. Characteristics of Sb2O3 nanoparticles synthesized from antimony by vapor condensation method. Mater. Lett., 58, 312-315(2004).

    [77] O. L. Arnache, J. Pino, L. C. Sánchez. Determination of milling parameters useful on the formation of CoSb3 thermoelectric powders by low-energy mechanical alloying. J. Mater. Sci. Mater. Electron., 27, 4120-4130(2016).

    [78] R. I. Hegde, S. R. Sainkar, S. Badrinarayanan, A. P. B. Sinha. A study of dilute tin alloys by X-ray photoelectron spectroscopy. J. Electron Spectrosc. Relat. Phenom., 24, 19-25(1981).

    [79] M. Bala, S. Gupta, S. K. Srivastava, S. Amrithapandian, T. S. Tripathi, S. K. Tripathi, C.-L. Dong, C.-L. Chen, D. K. Avasthi, K. Asokan. Evolution of nanostructured single-phase CoSb3 thin films by low-energy ion beam induced mixing and their thermoelectric-performance. Phys. Chem. Chem. Phys., 19, 24886-24895(2017).

    [80] W. E. Morgan, W. J. Stec, J. R. V. Wazer. Inner-orbital binding-energy shifts of antimony and bismuth compounds. Inorg. Chem., 12, 953-955(1973).

    [81] K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, J. Chen. High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective. Opt. Commun., 406, 214-229(2018).

    [82] J. Jeon, J. Lee, J. H. Lee. Numerical study on the minimum modulation depth of a saturable absorber for stable fiber laser mode locking. J. Opt. Soc. Am. B, 32, 31-37(2015).

    [83] S. M. J. Kelly. Characteristic sideband instability of periodically amplified average soliton. Electron. Lett., 28, 806-807(1992).

    [84] J. Bogusławski, G. Soboń, R. Zybała, K. Mars, A. Mikuła, K. M. Abramski, J. Sotor. Investigation on pulse shaping in fiber laser hybrid mode-locked by Sb2Te3 saturable absorber. Opt. Express, 23, 29014-29023(2015).

    CLP Journals

    [1] Han Zhang, Qiaoliang Bao, Zhipei Sun. Introduction to two-dimensional layered materials for ultrafast lasers[J]. Photonics Research, 2018, 6(10): TDL1

    [2] Jinho Lee, Kyungtaek Lee, Suhyoung Kwon, Bumsoo Shin, Ju Han Lee. Investigation of nonlinear optical properties of rhenium diselenide and its application as a femtosecond mode-locker[J]. Photonics Research, 2019, 7(9): 984

    Jinho Lee, Yoontaek Kim, Kyungtaek Lee, Ju Han Lee. Femtosecond mode-locking of a fiber laser using a CoSb3-skutterudite-based saturable absorber[J]. Photonics Research, 2018, 6(10): C36
    Download Citation