• Journal of the Chinese Ceramic Society
  • Vol. 51, Issue 7, 1858 (2023)
JIA Caiyun1,2,* and ZHANG Haijun1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article
    JIA Caiyun, ZHANG Haijun. Progress on Studies of Crystal Nucleation: Coexistence of Classical and Non-Classical Nucleation in Common System[J]. Journal of the Chinese Ceramic Society, 2023, 51(7): 1858 Copy Citation Text show less
    References

    [1] RIEGER J, KELLERMEIER M, NICOLEAU L. Formation of nanoparticles and nanostructures-an industrial perspective on CaCO3, cement, and polymers[J]. Angew Chem Int Ed Eng, 2014, 53: 12380-12396.

    [2] OSTWALD W. Studien über die bildung und umwandlung fester krper[J]. Zeitschrift Für Physi Chem, 1897, 22U(1): 289-330.

    [3] KARTHIKA S, RADHAKRISHNAN T K, KALAICHELVI P. A review of classical and nonclassical nucleation theories[J]. Cryst Growth Des, 2016, 16(11): 6663-6681.

    [4] VEKILOV P G. Nucleation[J]. Cryst Growth Des, 2010, 10(12): 5007-5019.

    [5] DE YOREO J J, GILBERT P U P A, SOMMERDIJK N A J M, et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments[J]. Science, 2015, 349(6247): aaa6760.

    [6] GEBAUER D, CLFEN H. Prenucleation clusters and non-classical nucleation[J]. Nano Today, 2011, 6(6): 564-584.

    [7] GEBAUER D, KELLERMEIER M, GALE J D, et al. Pre-nucleation clusters as solute precursors in crystallisation[J]. Chem Soc Rev, 2014, 43(7): 2348-71.

    [8] GOWER L B. Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization[J]. Chem Rev, 2008, 108(11): 4551-4627.

    [9] NIELSEN M H, ALONI S, De YOREO J J. In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways[J]. Science, 2014, 345(6201): 1158-1162.

    [10] LUPULESCU A I, RIMER J D. In situ imaging of silicalite-1 surface growth reveals the mechanism of crystallization[J]. Science, 2014, 344(6185): 729-732.

    [11] LI D S, NIELSEN M H, LEE J R I, et al. Direction-specific interactions control crystal growth by oriented attachment[J]. Science, 2012, 336(6084): 1014-1018.

    [12] KASHCHIEV D. Thermodynamically consistent description of the work to form a nucleus of any size[J]. J Chem Phys, 2003, 118(4): 1837-1851.

    [13] EYRING H. The activated complex in chemical reactions[J]. J Chem Phys, 1935, 3(2): 107-115.

    [14] SUN S T, CHEVRIER D M, ZHANG P, et al. Distinct short-range order is inherent to small amorphous calcium carbonate clusters (<2 nm)[J]. Angew Chem Int Ed Eng, 2016, 55(40): 12206-12209.

    [15] WALLACE A F, HEDGES L O, FERNANDEZ-MARTINEZ A, et al. Microscopic evidence for liquid-liquid separation in supersaturated CaCO3 solutions[J]. Science, 2013, 341(6148): 885-889.

    [16] GALKIN O, CHEN K, NAGEL R L, et al. Liquid-liquid separation in solutions of normal and sickle cell hemoglobin[J]. Proc Natl Acad Sci USA, 2002, 99(13): 8479-83.

    [17] VAN DRIESSCHE A E S, BENNING L G, RODRIGUEZ-BLANCO J D, et al. The role and implications of bassanite as a stable precursor phase to gypsum precipitation[J]. Science, 2012, 336(6077): 69-72.

    [18] GEBAUER D, VLKEL A, CLFEN H. Stable prenucleation calcium carbonate clusters[J]. Science, 2008, 322(5909): 1819-1822.

    [19] SCHEIFELE B, SAIKA-VOIVOD I, BOWLES R K, et al. Heterogeneous nucleation in the low-barrier regime[J]. Phys Rev E Stat Nonlin Soft Matter Phys, 2013, 87(4): 042407.

    [20] WANG X L, CHOU I M, HU W X, et al. In situ observations of liquid-liquid phase separation in aqueous MgSO4 solutions: Geological and geochemical implications[J]. Geochim Cosmochim Ac, 2013, 103: 1-10.

    [21] GOWER L B, ODOM D J. Deposition of calcium carbonate films by a polymer-induced liquid-precursor(PILP) process[J]. J Cryst Growth, 2000, 210(4): 719-734.

    [22] BEWERNITZ M A, GEBAUER D, LONG J, et al. A metastable liquid precursor phase of calcium carbonate and its interactions with polyaspartate[J]. Faraday Discuss, 2012, 159: 291-312.

    [23] RAITERI P, GALE J D. Water is the key to nonclassical nucleation of amorphous calcium carbonate[J]. J Am Chem Soc, 2010, 132(49): 17623-17634.

    [24] LOH N D, SEN S, BOSMAN M, et al. Multistep nucleation of nanocrystals in aqueous solution[J]. Nat Chem, 2017, 9(1): 77-82.

    [25] PERRY C C. Silicification: The processes by which organisms capture and mineralize silica[J]. Rev Mineral Geochem, 2003, 54(1): 291-327.

    [26] FURRER G, PHILLIPS B L, ULRICH K, et al. The origin of aluminum flocs in polluted streams[J]. Science, 2002, 297(5590): 2245-2247.

    [27] CASEY W H, SWADDLE T W. Why small? The use of small inorganic clusters to understand mineral surface and dissolution reactions in geochemistry[J]. Rev Geophys, 2003, 41(2): 1008.

    [28] KNEZIC D, ZACCARO J, MYERSON A S. Nucleation induction time in levitated droplets[J]. J Phys Chem B, 2004, 108(30): 10672-10677.

    [29] POUGET E M, BOMANS P H H, GOOS J A C M, et al. The initial stages of template-controlled CaCO3 formation revealed by cryo-TEM[J]. Science, 2009, 323(5920): 1455-1458.

    [30] DEY A, BOMANS P H H, MLLER F A, et al. The role of prenucleation clusters in surface-induced calcium phosphate crystallization[J]. Nat Mater, 2010, 9(12): 1010-1014.

    [31] HABRAKEN W J E M, TAO J H, BRYLKA L J, et al. Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate[J]. Nat Commun, 2013, 4: 1507.

    [32] KIMURA Y, NIINOMI H, TSUKAMOTO K, et al. In situ live observation of nucleation and dissolution of sodium chlorate nanoparticles by transmission electron microscopy[J]. J Am Chem Soc, 2014, 136(5): 1762-1765.

    [33] DEMICHELIS R, RAITERI P, GALE J D, et al. Stable prenucleation mineral clusters are liquid-like ionic polymers[J]. Nat Commun, 2011, 2: 590.

    [34] OGATA A F, RAKOWSKI A M, CARPENTER B P, et al. Direct observation of amorphous precursor phases in the nucleation of protein-metal-organic frameworks[J]. J Am Chem Soc, 2020, 142(3): 1433-1442.

    [35] ZOU Z, BERTINETTI L, POLITI Y, et al. Control of polymorph selection in amorphous calcium carbonate crystallization by poly(aspartic acid): Two different mechanisms[J]. Small, 2017, 13(21): 1603100.

    [36] KWON S G, HYEON T. Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods[J]. Small, 2011, 7(19): 2685-2702.

    [37] IHLI J, WANG Y W, CANTAERT B, et al. Precipitation of amorphous calcium oxalate in aqueous solution[J]. Chem Mater, 2015, 27(11): 3999-4007.

    [38] FAATZ M, GRHN F, WEGNER G. Amorphous calcium carbonate: synthesis and potential intermediate in biomineralization[J]. Adv Mater, 2004, 16(12): 996-1000.

    [39] KRAUTWURST N, NICOLEAU L, DIETZSCH M, et al. Two-step nucleation process of calcium silicate hydrate, the nanobrick of cement[J]. Chem Mater, 2018, 30(9): 2895-2904.

    [40] PICHON B P, BOMANS P H H, FREDERIK P M, et al. A quasi-time-resolved cryoTEM study of the nucleation of CaCO3 under Langmuir monolayers[J]. J Am Chem Soc, 2008, 130(12): 4034-4040.

    [41] RODRIGUEZ-BLANCO J D, SHAW S, BENNING L G. The kinetics and mechanisms of amorphous calcium carbonate(ACC) crystallization to calcite, via vaterite[J]. Nanoscale, 2011, 3(1): 265-271.

    [42] SUN S T, GEBAUER D, CLFEN H. Alignment of amorphous iron oxide clusters: a non-classical mechanism for magnetite formation[J]. Angew Chem Int Ed Engl, 2017, 56(14): 4042-4046.

    [43] AIZENBERG J, MULLER D A, GRAZUL J L, et al. Direct fabrication of large micropatterned single crystals[J]. Science, 2003, 299(5610): 1205-1208.

    [44] De Y J. Crystal nucleation: more than one pathway[J]. Nat Mater, 2013, 12(4): 284-285.

    [45] TONG H, MA W T, WANG L L, et al. Control over the crystal phase, shape, size and aggregation of calcium carbonate via a l-aspartic acid inducing process[J]. Biomaterials, 2004, 25(17): 3923-3929.

    [46] JIA C Y, WU L C, CHEN Q S, et al. Structural evolution of amorphous calcium sulfate nanoparticles into crystalline gypsum phase[J]. CrystEngComm, 2020, 22(41): 6805-6810.

    [47] JIA C Y, WU L C, FULTON J L, et al. Structural characteristics of amorphous calcium sulfate: Evidence to the role of water molecules[J]. J Phys Chem C, 2021, 125(6): 3415-3420.

    [48] LIU Z M, ZHANG Z S, WANG Z M, et al. Shape-preserving amorphous-to-crystalline transformation of CaCO3 revealed by in situ TEM[J]. Proc Natl Acad Sci USA, 2020, 117(7): 3397-3404.

    [49] RIMER J D. Inorganic ions regulate amorphous-to-crystal shape preservation in biomineralization[J]. Proc Natl Acad Sci USA, 2020, 117(7): 3360-3362.

    [50] SMEETS P J M, CHO K R, KEMPEN R G E, et al. Calcium carbonate nucleation driven by ion binding in a biomimetic matrix revealed by in situ electron microscopy[J]. Nat Mater, 2015, 14(4): 394-399.

    [51] BAUMGARTNER J, DEY A, BOMANS P H H, et al. Nucleation and growth of magnetite from solution[J]. Nat Mater, 2013, 12(4): 310-314.

    [52] HU Q, NIELSEN M H, FREEMAN C L, et al. The thermodynamics of calcite nucleation at organic interfaces: Classical vs. non-classical pathways[J]. Faraday Discuss, 2012, 159: 509.

    [53] SMEETS P J M, FINNEY A R, HABRAKEN W J E M, et al. A classical view on nonclassical nucleation[J]. Proc Natl Acad Sci USA, 2017, 114(38): E7882-E7890.

    JIA Caiyun, ZHANG Haijun. Progress on Studies of Crystal Nucleation: Coexistence of Classical and Non-Classical Nucleation in Common System[J]. Journal of the Chinese Ceramic Society, 2023, 51(7): 1858
    Download Citation