[1] SAHA K, AGASTI S S, KIM C, et al. Gold nanoparticles in chemical and biological sensing[J]. Chemical Reviews, 112, 2739-2779(2012).
[2] YAO G Y, LIU Q L, ZHAO Z Y. Applications of localized surface plasmon resonance effect in photocatalysis[J]. Progress in Chemistry, 31, 516-535(2019).
[3] FRÖHLICH E, WAHL R. Nanoparticles: promising auxiliary agents for diagnosis and therapy of thyroid cancers[J]. Cancers, 13, 4063(2021).
[4] WILLETS K A, WILSON A J, SUNDARESAN V, et al. Super-resolution imaging and plasmonics[J]. Chemical Reviews, 117, 7538-7582(2017).
[5] ZIJLSTRA P, CHON J W M, GU M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods[J]. Nature, 459, 410-413(2009).
[6] ORTIZ-CASTILLO J E, GALLO-VILLANUEVA R C, MADOU M J, et al. Anisotropic gold nanoparticles: a survey of recent synthetic methodologies[J]. Coordination Chemistry Reviews, 425, 213489(2020).
[7] STOKES N, MCDONAGH A M, CORTIE M B. Preparation of nanoscale gold structures by nanolithography[J]. Gold Bulletin, 40, 310-320(2007).
[8] HELL S W, WICHMANN J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 19, 780-782(1994).
[9] SONNEFRAUD Y, SINCLAIR H G, SIVAN Y, et al. Experimental proof of concept of nanoparticle-assisted STED[J]. Nano Letters, 14, 4449-4453(2014).
[10] CHU S W, WU H Y, HUANG Y T, et al. Saturation and reverse saturation of scattering in a single plasmonic nanoparticle[J]. ACS Photonics, 1, 32-37(2014).
[11] CHEN Y T, LEE P H, SHEN P T, et al. Study of nonlinear plasmonic scattering in metallic nanoparticles[J]. ACS Photonics, 3, 1432-1439(2016).
[12] NISHIDA K, DEKA G, SMITH N I, et al. Nonlinear scattering of near-infrared light for imaging plasmonic nanoparticles in deep tissue[J]. ACS Photonics, 7, 2139-2146(2020).
[13] WU H Y, HUANG Y T, SHEN P T, et al. Ultrasmall all-optical plasmonic switch and its application to superresolution imaging[J]. Scientific Reports, 6, 24293(2016).
[14] XU J, ZHANG T Y, YANG S Y, et al. Plasmonic nanoprobes for multiplexed fluorescence-free super-resolution imaging[J]. Advanced Optical Materials, 6, 1800432(2018).
[15] JAGADALE T C, MURALI D S, CHU S W. Nonlinear absorption and scattering of a single plasmonic nanostructure characterized by
[16] TANG Y L, YEN T H, NISHIDA K, et al. Mie-enhanced photothermal/thermo-optical nonlinearity and applications on all-optical switch and super-resolution imaging [Invited][J]. Optical Materials Express, 11, 3608-3626(2021).
[17] AMENDOLA V, PILOT R, FRASCONI M, et al. Surface plasmon resonance in gold nanoparticles: a review[J]. Journal of Physics: Condensed Matter, 29, 203002(2017).
[18] GU M. Imaging with a high numericalaperture objective[M]Advanced Optical Imaging They. Berlin, Heidelberg: Springer, 2000: 143 176.
[20] SIVAN Y, CHU S W. Nonlinear plasmonics at high temperatures[J]. Nanophotonics, 6, 317-328(2017).
[21] UN I W, SIVAN Y. Size-dependence of the photothermal response of a single metal nanosphere[J]. Journal of Applied Physics, 126, 173103(2019).
[22] BAFFOU G, QUIDANT R, DE ABAJO F J G. Nanoscale control of optical heating in complex plasmonic systems[J]. ACS Nano, 4, 709-716(2010).
[23] BAFFOU G, BERTO P, UREÑA E B, et al. Photoinduced heating of nanoparticle arrays[J]. ACS Nano, 7, 6478-6488(2013).
[24] MAYER K M, HAFNER J H. Localized surface plasmon resonance sensors[J]. Chemical Reviews, 111, 3828-3857(2011).
[25] SHEN P T, SIVAN Y, LIN C W, et al. Temperature- and roughness-dependent permittivity of annealed/unannealed gold films[J]. Optics Express, 24, 19254-19263(2016).