• Photonics Research
  • Vol. 8, Issue 8, 1296 (2020)
Bin Fang1、2, Hanmeng Li1、2, Shining Zhu1、2, and Tao Li1、2、*
Author Affiliations
  • 1National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Integration, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
  • 2Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
  • show less
    DOI: 10.1364/PRJ.391850 Cite this Article Set citation alerts
    Bin Fang, Hanmeng Li, Shining Zhu, Tao Li. Second-harmonic generation and manipulation in lithium niobate slab waveguides by grating metasurfaces[J]. Photonics Research, 2020, 8(8): 1296 Copy Citation Text show less
    References

    [1] P. A. Franken, A. E. Hill, C. W. Peters, G. Weinreich. Generation of optical harmonics. Phys. Rev. Lett., 7, 118-119(1961).

    [2] F. Vollmer, S. Arnold. Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat. Methods, 5, 591-596(2008).

    [3] E. J. Lim, M. M. Fejer, R. L. Byer. Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide. Electron. Lett., 25, 174-175(1989).

    [4] J. P. Meyn, C. Laue, R. Knappe, R. Wallenstein, M. M. Fejer. Fabrication of periodically poled lithium tantalate for UV generation with diode lasers. Appl. Phys. B, 73, 111-114(2001).

    [5] K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, C. Lynch. Terahertz-wave generation in quasi-phase-matched GaAs. Appl. Phys. Lett., 89, 141119(2006).

    [6] R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, P. St. J. Russell. Optical frequency synthesizer for precision spectroscopy. Phys. Rev. Lett., 85, 2264-2267(2000).

    [7] T. Udem, R. Holzwarth, T. W. Hänsch. Optical frequency metrology. Nature, 416, 233-237(2002).

    [8] P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg. Optical frequency comb generation from a monolithic microresonator. Nature, 450, 1214-1217(2007).

    [9] A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, S. R. Nuccio. Optically efficient nonlinear signal processing. IEEE J. Sel. Top. Quantum Electron., 17, 320-332(2011).

    [10] N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, W. Tittel. Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control. Phys. Rev. Lett., 113, 053603(2014).

    [11] J. A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Pershan. Interactions between light waves in a nonlinear dielectric. Phys. Rev., 127, 1918-1939(1962).

    [12] D. N. Nikogosyan. Nonlinear Optical Crystals: A Complete Survey(2005).

    [13] B. Jalali, S. Fathpour. Silicon photonics. J. Lightwave Technol., 24, 4600-4615(2006).

    [14] G. Poberaj, H. Hu, W. Sohler, P. Günter. Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photon. Rev., 6, 488-503(2012).

    [15] C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I. C. Huang, P. Stark, M. Lončar. Integrated high quality factor lithium niobate microdisk resonators. Opt. Express, 22, 30924-30933(2014).

    [16] J. Lin, Y. Xu, Z. Fang, M. Wang, N. Wang, L. Qiao, W. Fang, Y. Cheng. Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining. Sci. China Phys. Mech. Astron., 58, 114209(2015).

    [17] M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, M. Lončar. Monolithic ultra-high-Q lithium niobate microring resonator. Optica, 4, 1536-1537(2017).

    [18] R. Wolf, Y. Jia, S. Bonaus, C. S. Werner, S. J. Herr, I. Breunig, K. Buse, H. Zappe. Quasi-phase-matched nonlinear optical frequency conversion in on-chip whispering galleries. Optica, 5, 872-875(2018).

    [19] R. Wu, J. Zhang, N. Yao, W. Fang, L. Qiao, Z. Chai, J. Lin, Y. Cheng. Lithium niobate micro-disk resonators of quality factors above 107. Opt. Lett., 43, 4116-4119(2018).

    [20] C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, M. Lončar. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101-104(2018).

    [21] M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, X. Cai. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s–1 and beyond. Nat. Photonics, 13, 359-364(2019).

    [22] X. Wang, P. O. Weigel, J. Zhao, M. Ruesing, S. Mookherjea. Achieving beyond-100-GHz large-signal modulation bandwidth in hybrid silicon photonics Mach Zehnder modulators using thin film lithium niobate. APL Photon., 4, 096101(2019).

    [23] M. Xu, W. Chen, M. He, X. Wen, Z. Ruan, J. Xu, L. Chen, L. Liu, S. Yu, X. Cai. Michelson interferometer modulator based on hybrid silicon and lithium niobate platform. APL Photon., 4, 100802(2019).

    [24] M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, M. Lončar. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 568, 373-377(2019).

    [25] D. Pohl, M. R. Escalé, M. Madi, F. Kaufmann, P. Brotzer, A. Sergeyev, B. Guldimann, P. Giaccari, E. Alberti, U. Meier, R. Grange. An integrated broadband spectrometer on thin-film lithium niobate. Nat. Photonics, 14, 24-29(2019).

    [26] R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E.-B. Kley, A. Tünnermann, T. Pertsch. Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation. Opt. Lett., 40, 2715-2718(2015).

    [27] L. Cai, Y. Wang, H. Hu. Efficient second harmonic generation in χ(2) profile reconfigured lithium niobate thin film. Opt. Commun., 387, 405-408(2017).

    [28] C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X. Ren, G. Guo, M. Lončar. Second harmonic generation in nano-structured thin-film lithium niobate waveguides. Opt. Express, 25, 6963-6973(2017).

    [29] R. Luo, Y. He, H. Liang, M. Li, Q. Lin. Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide. Optica, 5, 1006-1011(2018).

    [30] R. Luo, Y. He, H. Liang, M. Li, Q. Lin. Semi-nonlinear nanophotonic waveguides for highly efficient second-harmonic generation. Laser Photon. Rev., 13, 1800288(2019).

    [31] L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, J. E. Bowers. Thin film wavelength converters for photonic integrated circuits. Optica, 3, 531-535(2016).

    [32] A. Rao, M. Malinowski, A. Honardoost, J. R. Talukder, P. Rabiei, P. Delfyett, S. Fathpour. Second-harmonic generation in periodically-poled thin film lithium niobate wafer-bonded on silicon. Opt. Express, 24, 29941-29947(2016).

    [33] C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, M. Lončar. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica, 5, 1438-1441(2018).

    [34] C. Wang, Z. Li, M. Kim, X. Xiong, X. Ren, G. Guo, N. Yu, M. Lončar. Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides. Nat. Commun., 8, 2098(2017).

    [35] A. Boes, B. Corcoran, L. Chang, J. Bowers, A. Mitchell. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photon. Rev., 12, 1700256(2018).

    [36] W. H. Lee. Binary computer-generated holograms. Appl. Opt., 18, 3661-3669(1979).

    [37] I. Dolev, I. Epstein, A. Arie. Surface-plasmon holographic beam shaping. Phys. Rev. Lett., 109, 203903(2012).

    [38] J. Chen, L. Li, T. Li, S. N. Zhu. Indefinite plasmonic beam engineering by in-plane holography. Sci. Rep., 6, 28926(2016).

    [39] C. Zhao, J. Chen, H. Li, T. Li, S. Zhu. Mode division multiplexed holography by out-of-plane scattering of plasmon/guided modes. Chin. Opt. Lett., 16, 070901(2018).

    [40] I. Epstein, Y. Lilach, A. Arie. Shaping plasmonic light beams with near-field plasmonic holograms. J. Opt. Soc. Am. B, 31, 1642-1647(2014).

    [41] L. Li, T. Li, S. M. Wang, C. Zhang, S. N. Zhu. Plasmonic Airy beam generated by in-plane diffraction. Phys. Rev. Lett., 107, 126804(2011).

    [42] L. Li, T. Li, S. M. Wang, S. N. Zhu. Collimated plasmon beam: nondiffracting versus linearly focused. Phys. Rev. Lett., 110, 046807(2013).

    [43] Q. Q. Cheng, T. Li, L. Li, S. M. Wang, S. N. Zhu. Mode division multiplexing in a polymer-loaded plasmonic planar waveguide. Opt. Lett., 39, 3900-3902(2014).

    CLP Journals

    [1] Chunyan Jin, Wei Wu, Lei Cao, Bofeng Gao, Jiaxin Chen, Wei Cai, Mengxin Ren, Jingjun Xu. Fabrication of lithium niobate metasurfaces via a combination of FIB and ICP-RIE[J]. Chinese Optics Letters, 2022, 20(11): 113602

    [2] Yang Li, Zhijin Huang, Wentao Qiu, Jiangli Dong, Heyuan Guan, Huihui Lu. Recent progress of second harmonic generation based on thin film lithium niobate [Invited][J]. Chinese Optics Letters, 2021, 19(6): 060012

    [3] Bin Fang, Shenglun Gao, Zhizhang Wang, Shining Zhu, Tao Li. Efficient second harmonic generation in silicon covered lithium niobate waveguides[J]. Chinese Optics Letters, 2021, 19(6): 060004

    [4] Linpeng Gu, Liang Fang, Qingchen Yuan, Xuetao Gan, Hao Yang, Xutao Zhang, Juntao Li, Hanlin Fang, Vladislav Khayrudinov, Harri Lipsanen, Zhipei Sun, Jianlin Zhao. Nanowire-assisted microcavity in a photonic crystal waveguide and the enabled high-efficiency optical frequency conversions[J]. Photonics Research, 2020, 8(11): 1734

    Bin Fang, Hanmeng Li, Shining Zhu, Tao Li. Second-harmonic generation and manipulation in lithium niobate slab waveguides by grating metasurfaces[J]. Photonics Research, 2020, 8(8): 1296
    Download Citation