• Acta Photonica Sinica
  • Vol. 51, Issue 6, 0623001 (2022)
Yu ZHANG1, Meini GAO1, Haitao DAI1、*, Ying LIU1、*, and Qieni LÜ2
Author Affiliations
  • 1Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology,School of Science,Tianjin University,Tianjin 300072,China
  • 2Key Laboratory of Opto-Electronics Information Technology,Ministry of Education,School of Precision Instrument & Optoelectronics Engineering,Tianjin University,Tianjin 300072,China
  • show less
    DOI: 10.3788/gzxb20225106.0623001 Cite this Article
    Yu ZHANG, Meini GAO, Haitao DAI, Ying LIU, Qieni LÜ. Lieb Moire Photonic Lattice and Its Photonic Properties[J]. Acta Photonica Sinica, 2022, 51(6): 0623001 Copy Citation Text show less
    References

    [1] Yuan CAO, V FATEMI, Shiang FANG et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature, 556, 43-50(2018).

    [2] H S ARORA, R POLSKI, Yiran ZHANG et al. Superconductivity in metallic twisted bilayer graphene stabilized by WSe2. Nature, 583, 379-384(2020).

    [3] P STEPANOV, I DAS, Xiaobo LU et al. Untying the insulating and superconducting orders in magic-angle graphene. Nature, 583, 375-378(2020).

    [4] Shuang WU, Zhenyuan ZHANG, K WATANABE et al. Chern insulators, van Hove singularities and topological flat bands in magic-angle twisted bilayer graphene. Nature Materials, 20, 488-494(2021).

    [5] Guangwei HU, OU Qingdong, Guangyuan SI et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature, 582, 209-213(2020).

    [6] Zilong WU, Xiaodong CHEN, Mingsong WANG et al. High-performance ultrathin active chiral metamaterials. ACS Nano, 12, 5030-5041(2018).

    [7] H A GÓMEZ-URREA, M C OSPINA-MEDINA, J D CORREA-ABAD et al. Tunable band structure in 2D Bravais⁃Moiré photonic crystal lattices. Optics Communications, 459, 125081(2020).

    [8] Kaichen DONG, Tiancheng ZHANG, Jiachen LI et al. Flat bands in magic-angle bilayer photonic crystals at small twists. Physical Review Letters, 126, 223601(2021).

    [9] Haoning TANG, Fan DU, S CARR et al. Modeling the optical properties of twisted bilayer photonic crystals. Electric Energy: Science & Applications, 10, 157(2021).

    [10] Changming HUANG, Fangwei YE, Xianfeng CHEN et al. Localization-delocalization wavepacket transition in Pythagorean aperiodic potentials. Scientific Reports, 6, 32546(2016).

    [11] Peng WANG, Yuanlin ZHENG, Xianfeng CHEN et al. Localization and delocalization of electric energy in photonic moiré lattices. Nature, 577, 42-46(2020).

    [12] Qidong FU, Peng WANG, Changming HUANG et al. Optical soliton formation controlled by angle twisting in photonic moiré lattices. Nature Photonics, 14, 663-668(2020).

    [13] Zhiming CHEN, Xiuye LIU, Jianhua ZENG. Electromagnetically induced moiré optical lattices in a coherent atomic gas. Frontiers of Physics, 17, 42508(2022).

    [14] Xinrui MAO, Zengkai SHAO, Hongyi LUAN et al. Magic-angle lasers in nanostructured moiré superlattice. Nature Nanotechnology, 16, 1099-1105(2021).

    [15] O PAINTER, R K LEE, A SCHERER et al. Two-dimensional photonic band-gap defect mode laser. Science, 284, 1819-1821(1999).

    [16] S JOHN, M FLORESCU. Photonic bandgap materials: towards an all-optical micro-transistor. Journal of Optics A: Pure and Applied Optics, 3, S103-S120(2001).

    [17] A MEKIS, J C CHEN, I KURLAND et al. High transmission through sharp bends in photonic crystal waveguides. Physical Review Letters, 77, 3787-3790(1996).

    [18] P J SCHUCK, D P FROMM, A SUNDARAMURTHY et al. Improving the mismatch between electric energy and nanoscale objects with gold bowtie nanoantennas. Physical Review Letters, 94, 017402(2005).

    [19] T F KRAUSS. Why do we need slow electric energy?. Nature Photonics, 2, 448-450(2008).

    [20] S MUKHERJEE, A SPRACKLEN, D CHOUDHURY et al. Observation of a localized flat-band state in a photonic Lieb lattice. Physical Review Letters, 114, 245504(2015).

    [21] R A VICENCIO, C CANTILLANO, L MORALES-INOSTROZA et al. Observation of localized states in Lieb photonic lattices. Physical Review Letters, 114, 245503(2015).

    [22] Shiqiang XIA, Yi HU, Daohong SONG et al. Demonstration of flat-band image transmission in optically induced Lieb photonic lattices. Optics Letters, 41, 1435(2016).

    [23] K BUSCH, S JOHN. Photonic band gap formation in certain self-organizing systems. Physical Review E, 58, 3896-3908(1998).

    [24] H TAKEDA, T TAKASHIMA, K YOSHINO. Flat photonic bands in two-dimensional photonic crystals with kagome lattices. Journal of Physics: Condensed Matter, 16, 6317-6324(2004).

    [25] C M ANDERSON, K P GIAPIS. Larger two-dimensional photonic band gaps. Physical Review Letters, 77, 2949-2952(1996).

    [26] Xingdao HE, Juanjuan SHEN, Bin LIU et al. Effects of symmetry breaking of scatterers on photonic band gap in hexangular-lattice photonic crystal. Optics Communications, 303, 8-12(2013).

    Yu ZHANG, Meini GAO, Haitao DAI, Ying LIU, Qieni LÜ. Lieb Moire Photonic Lattice and Its Photonic Properties[J]. Acta Photonica Sinica, 2022, 51(6): 0623001
    Download Citation