• Photonics Research
  • Vol. 13, Issue 1, 201 (2025)
Peng-Peng Zhou1,2,†, Shao-Long Chen1,3,†, Cheng-Gang Qin4, Xu-Rui Chang1,5..., Zhi-Qiang Zhou1,5, Wei Sun1,6, Yao Huang1,3, Ke-Lin Gao1,3,8,* and Hua Guan1,3,7,9,*|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
  • 2Information Engineering University, Zhengzhou 450001, China
  • 3Key Laboratory of Time Reference and Applications, Chinese Academy of Sciences, Wuhan 430206, China
  • 4MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
  • 5University of Chinese Academy of Sciences, Beijing 100049, China
  • 6Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
  • 7Wuhan Institute of Quantum Technology, Wuhan 430206, China
  • 8e-mail: klgao@wipm.ac.cn
  • 9e-mail: guanhua@wipm.ac.cn
  • show less
    DOI: 10.1364/PRJ.538659 Cite this Article Set citation alerts
    Peng-Peng Zhou, Shao-Long Chen, Cheng-Gang Qin, Xu-Rui Chang, Zhi-Qiang Zhou, Wei Sun, Yao Huang, Ke-Lin Gao, Hua Guan, "Precise spectroscopy of metastable Li+ using the optical Ramsey technique in support of time dilation tests," Photonics Res. 13, 201 (2025) Copy Citation Text show less
    References

    [1] D. Mattingly. Modern tests of Lorentz invariance. Living Rev. Relativ., 8, 5(2005).

    [2] V. A. Kostelecký. Lorentz violation and gravity. CPT And Lorentz Symmetry, 71-79(2005).

    [3] D. Colladay, V. A. Kostelecký. Lorentz-violating extension of the standard model. Phys. Rev. D, 58, 116002(1998).

    [4] V. A. Kostelecký, S. Samuel. Spontaneous breaking of Lorentz symmetry in string theory. Phys. Rev. D, 39, 683-685(1989).

    [5] G. Amelino-Camelia, J. Ellis, N. E. Mavromatos. Tests of quantum gravity from observations of γ-ray bursts. Nature, 393, 763-765(1998).

    [6] R. Gambini, J. Pullin. Nonstandard optics from quantum space-time. Phys. Rev. D, 59, 124021(1999).

    [7] V. A. Kostelecký, N. Russell. Data tables for Lorentz and CPT violation. Rev. Mod. Phys., 83, 11-31(2011).

    [8] C. Sanner, N. Huntemann, R. Lange. Optical clock comparison for Lorentz symmetry testing. Nature, 567, 204-208(2019).

    [9] Z. Cao, F. Aharonian, Q. An. Exploring Lorentz invariance violation from ultrahigh-energy γ rays observed by LHAASO. Phys. Rev. Lett., 128, 051102(2022).

    [10] M. E. Tobar, P. Wolf, A. Fowler. New methods of testing Lorentz violation in electrodynamics. Phys. Rev. D, 71, 025004(2005).

    [11] A. R. H. Smith, M. Ahmadi. Quantum clocks observe classical and quantum time dilation. Nat. Commun., 11, 5360(2020).

    [12] X. Zheng, J. Dolde, V. Lochab. Differential clock comparisons with a multiplexed optical lattice clock. Nature, 602, 425-430(2022).

    [13] R. Shaniv, R. Ozeri, M. S. Safronova. New methods for testing Lorentz invariance with atomic systems. Phys. Rev. Lett., 120, 103202(2018).

    [14] B. Botermann, D. Bing, C. Geppert. Test of time dilation using stored Li+ ions as clocks at relativistic speed. Phys. Rev. Lett., 113, 120405(2014).

    [15] H. E. Ives, G. R. Stilwell. An experimental study of the rate of a moving atomic clock. J. Opt. Soc. Am., 28, 215-226(1938).

    [16] H. P. Robertson. Postulate versus observation in the special theory of relativity. Rev. Mod. Phys., 21, 378-382(1949).

    [17] R. Mansouri, R. U. Sexl. A test theory of special relativity: I. Simultaneity and clock synchronization. Gen. Relativ. Gravit., 8, 497-513(1977).

    [18] R. Mansouri, R. U. Sexl. A test theory of special relativity: II. First order tests. Gen. Relativ. Gravit., 8, 515-524(1977).

    [19] R. Mansouri, R. U. Sexl. A test theory of special relativity: III. Second-order tests. Gen. Relativ. Gravit., 8, 809-814(1977).

    [20] S. Reinhardt, G. Saathoff, H. Buhr. Test of relativistic time dilation with fast optical atomic clocks at different velocities. Nat. Phys., 3, 861-864(2007).

    [21] P. Delva, J. Lodewyck, S. Bilicki. Test of special relativity using a fiber network of optical clocks. Phys. Rev. Lett., 118, 221102(2017).

    [22] E. Riis, A. G. Sinclair, O. Poulsen. Lamb shifts and hyperfine structure in 6Li+ and 7Li+: theory and experiment. Phys. Rev. A, 49, 207(1994).

    [23] H. Rong, S. Grafström, J. Kowalski. A new precise value of the absolute 23S1F = 5/2 - 23P2F = 7/2 transition frequency in 7Li+. Eur. Phys. J. D, 3, 217-222(1998).

    [24] F. Riehle, A. Morinaga, J. Ishikawa. A calcium frequency standard: frequency stabilization by means of nonlinear Ramsey resonances. Conference on Precision Electromagnetic Measurements, 18-19(1988).

    [25] A. Morinaga, F. Riehle, J. Ishikawa. A ca optical frequency standard: frequency stabilization by means of nonlinear Ramsey resonances. Appl. Phys. B, 48, 165-171(1989).

    [26] S. Chen, S. Liang, W. Sun. Saturated fluorescence spectroscopy measurement apparatus based on metastable Li+ beam with low energy. Rev. Sci. Instrum., 90, 043112(2019).

    [27] N. Ito, J. Ishikawa, A. Morinaga. Evaluation of the optical phase shift in a Ca Ramsey fringe stabilized optical frequency standard by means of laser-beam reversal. Opt. Commun., 109, 414-421(1994).

    [28] P. Zhou, W. Sun, S. Liang. Digital long-term laser frequency stabilization with an optical frequency comb. Appl. Opt., 60, 6097-6102(2021).

    [29] W. Sun, P.-P. Zhang, P.-P. Zhou. Measurement of hyperfine structure and the Zemach radius in 6Li+ using optical Ramsey technique. Phys. Rev. Lett., 131, 103002(2023).

    [30] J. Hwang, K.-I. Kim, T. Ogawa. Study and design of a lens-type retarding field energy analyzer without a grid electrode. Ultramicroscopy, 209, 112880(2020).

    [31] C. L. Enloe, J. R. Shell. Optimizing the energy resolution of planar retarding potential analyzers. Rev. Sci. Instrum., 63, 1788-1791(1992).

    [32] Y.-H. Zhang, L.-Y. Tang, X.-Z. Zhang. Calculations of the dynamic dipole polarizabilities for the Li+ ion. Chin. Phys. B, 25, 103101(2016).

    [33] G. Saathoff, S. Karpuk, U. Eisenbarth. Improved test of time dilation in special relativity. Phys. Rev. Lett., 91, 190403(2003).

    [34] J. Kowalski, R. Neumann, S. Noehte. Laser-microwave spectroscopy in the excited 1s2s 3S1 and 1s2p 3P hyperfine multiplets of helium-like 6,7Li. Hyperfine Interact., 15, 159-162(1983).

    [35] H. Guan, X.-Q. Qi, P.-P. Zhou. Precision spectroscopy and nuclear structure parameters in 7Li+ ion. arXiv(2024).

    [36] H. Guan, S. Chen, X.-Q. Qi. Probing atomic and nuclear properties with precision spectroscopy of fine and hyperfine structures in the 7Li+ ion. Phys. Rev. A, 102, 030801(2020).

    [37] J. J. Clarke, W. A. van Wijngaarden. Hyperfine and fine-structure measurements of 6,7Li+1s2s3S and 1s2p3P states. Phys. Rev. A, 67, 012506(2003).

    [38] K. Pachucki, V. A. Yerokhin. Fine structure of heliumike ions and determination of the fine structure constant. Phys. Rev. Lett., 104, 070403(2010).

    [39] N. F. Ramsey. A new molecular beam resonance method. Phys. Rev., 76, 996(1949).

    [40] C. Bordé. Atomic interferometry with internal state labelling. Phys. Lett. A, 140, 10-12(1989).

    [41] C. J. Bordé, S. Avrillier, A. Van Lerberghe. Observation of optical Ramsey fringes in the 10 μm spectral region using a supersonic beam of SF6. J. Phys. Colloq., 42, C8(1981).

    [42] C. J. Bordé, C. Salomon, S. Avrillier. Optical Ramsey fringes with traveling waves. Phys. Rev. A, 30, 1836-1848(1984).

    [43] T. Udem, L. Maisenbacher, A. Matveev. Quantum interference line shifts of broad dipole-allowed transitions. Ann. Phys., 531, 1900044(2019).

    [44] A. Beyer, L. Maisenbacher, A. Matveev. The Rydberg constant and proton size from atomic hydrogen. Science, 358, 79-85(2017).

    [45] J. Castillega, D. Livingston, A. Sanders. Precise measurement of the J = 1 to J = 2 fine structure interval in the 23P state of helium. Phys. Rev. Lett., 84, 4321-4324(2000).

    [46] A. Marsman, E. A. Hessels, M. Horbatsch. Shifts due to quantum-mechanical interference from distant neighboring resonances for saturated fluorescence spectroscopy of the 23S to 23P intervals of helium. Phys. Rev. A, 89, 043403(2014).

    [47] A. Marsman, M. Horbatsch, E. A. Hessels. Quantum interference effects in saturated absorption spectroscopy of n = 2 triplet-helium fine structure. Phys. Rev. A, 91, 062506(2015).

    [48] C. J. Sansonetti, C. E. Simien, J. D. Gillaspy. Absolute transition frequencies and quantum interference in a frequency comb based measurement of the 6,7Li D lines. Phys. Rev. Lett., 107, 023001(2011).

    [49] R. C. Brown, S. Wu, J. V. Porto. Quantum interference and light polarization effects in unresolvable atomic lines: application to a precise measurement of the 6,7Li D2 lines. Phys. Rev. A, 87, 032504(2013).

    [50] D. M. Fairbank, A. L. Banducci, R. W. Gunkelman. Absolute frequency measurements of the D lines in 9Be+ using a single trapped ion. Phys. Rev. Lett., 131, 093001(2023).

    [51] M. Horbatsch, E. A. Hessels. Shifts from a distant neighboring resonance. Phys. Rev. A, 82, 052519(2010).

    Peng-Peng Zhou, Shao-Long Chen, Cheng-Gang Qin, Xu-Rui Chang, Zhi-Qiang Zhou, Wei Sun, Yao Huang, Ke-Lin Gao, Hua Guan, "Precise spectroscopy of metastable Li+ using the optical Ramsey technique in support of time dilation tests," Photonics Res. 13, 201 (2025)
    Download Citation