• Photonics Research
  • Vol. 12, Issue 6, 1115 (2024)
Lei Cao1,2, Fanqi Meng2,*, Esra Özdemir2, Yannik Loth3..., Merle Richter3, Anna Katharina Wigger3, Maira Beatriz Pérez Sosa4, Alaa Jabbar Jumaah4, Shihab Al-Daffaie4, Peter Haring Bolívar3 and Hartmut G. Roskos2,5|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Advanced Electromagnetic Technology, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2Physikalisches Institut, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
  • 3University of Siegen, Institute for High Frequency and Quantum Electronics, Siegen, Germany
  • 4Department of Electrical Engineering, Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands
  • 5e-mail: roskos@physik.uni-frankfurt.de
  • show less
    DOI: 10.1364/PRJ.516228 Cite this Article Set citation alerts
    Lei Cao, Fanqi Meng, Esra Özdemir, Yannik Loth, Merle Richter, Anna Katharina Wigger, Maira Beatriz Pérez Sosa, Alaa Jabbar Jumaah, Shihab Al-Daffaie, Peter Haring Bolívar, Hartmut G. Roskos, "Interdigitated terahertz metamaterial sensors: design with the dielectric perturbation theory," Photonics Res. 12, 1115 (2024) Copy Citation Text show less
    References

    [1] A. Lahav, M. Auslender, I. Abdulhalim. Sensitivity enhancement of guided-wave surface-plasmon resonance sensors. Opt. Lett., 33, 2539-2541(2008).

    [2] E. S. Yu, S. H. Lee, G. Lee. Nanoscale terahertz monitoring on multiphase dynamic assembly of nanoparticles under aqueous environment. Adv. Sci., 8, 2004826(2021).

    [3] Y.-M. Bahk, K.-H. Kim, K. J. Ahn. Recent developments in terahertz nanosensors. Adv. Photon. Res., 5, 2300211(2023).

    [4] F. Vollmer, L. Yang. Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices. Nanophotonics, 1, 267-291(2012).

    [5] W. Yu, W. C. Jiang, Q. Lin. Cavity optomechanical spring sensing of single molecules. Nat. Commun., 7, 12311(2016).

    [6] N. P. Mauranyapin, L. S. Madsen, M. A. Taylor. Evanescent single-molecule biosensing with quantum-limited precision. Nat. Photonics, 11, 477-481(2017).

    [7] W. Withayachumnankul, D. Abbott. Metamaterials in the terahertz regime. IEEE Photon. J., 1, 99-118(2009).

    [8] C. Debus, P. H. Bolivar. Frequency selective surfaces for high sensitivity terahertz sensing. Appl. Phys. Lett., 91, 184102(2007).

    [9] I. A. I. Al-Naib, C. Jansen, M. Koch. Thin-film sensing with planar asymmetric metamaterial resonators. Appl. Phys. Lett., 93, 083507(2008).

    [10] R. Singh, W. Cao, I. Al-Naib. Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces. Appl. Phys. Lett., 105, 171101(2014).

    [11] C. Weisenstein, D. Schaar, A. K. Wigger. Ultrasensitive THz biosensor for PCR-free CDNA detection based on frequency selective surfaces. Biomed. Opt. Express, 11, 448-460(2020).

    [12] S. J. Park, S. H. Cha, G. A. Shin. Sensing viruses using terahertz nano-gap metamaterials. Biomed. Opt. Express, 8, 3551-3558(2017).

    [13] F. Meng, F. Han, U. Kentsch. Coherent coupling of metamaterial resonators with dipole transitions of boron acceptors in Si. Opt. Lett., 47, 4969-4972(2022).

    [14] W. Withayachumnankul, H. Lin, K. Serita. Sub-diffraction thin-film sensing with planar terahertz metamaterials. Opt. Express, 20, 3345-3352(2012).

    [15] M. Islam, S. J. M. Rao, G. Kumar. Role of resonance modes on terahertz metamaterials based thin film sensors. Sci. Rep., 7, 7355(2017).

    [16] S. W. Jun, Y. H. Ahn. Terahertz thermal curve analysis for label-free identification of pathogens. Nat. Commun., 13, 3470(2022).

    [17] M. Gupta, R. Singh. Terahertz sensing with optimized Q/Veff metasurface cavities. Adv. Opt. Mater., 8, 1902025(2020).

    [18] T. Driscoll, G. O. Andreev, D. N. Basov. Tuned permeability in terahertz split-ring resonators for devices and sensors. Appl. Phys. Lett., 91, 062511(2007).

    [19] I. Al-Naib. Biomedical sensing with conductively coupled terahertz metamaterial resonators. IEEE J. Quantum Electron., 23, 4700405(2017).

    [20] B. Jin, W. Tan, C. Zhang. High-performance terahertz sensing at exceptional points in a bilayer structure. Adv. Theory Simul., 1, 1800070(2018).

    [21] J. Ma, S. Wang, Y. Yang. Simulation of terahertz-band metamaterial sensor for thin film analyte detection. AIP Adv., 10, 085227(2020).

    [22] L. Sun, L. Xu, J. Y. Wang. A pixelated frequency-agile metasurface for broadband terahertz molecular fingerprint sensing. Nanoscale, 14, 9681-9685(2022).

    [23] F. Meng, L. Cao, A. Karalis. Strong coupling of plasmonic bright and dark modes with two eigenmodes of a photonic crystal cavity. Opt. Express, 31, 39624-39637(2023).

    [24] W. He, Y. Hu, Z. Ren. Transient loss-induced non-Hermitian degeneracies for ultrafast terahertz metadevices. Adv. Sci., 10, 2304972(2023).

    [25] M. Tang, L. Xia, D. Wei. Rapid and label-free metamaterial-based biosensor for fatty acid detection with terahertz time-domain spectroscopy. Spectrochim. Acta A, 228, 117736(2020).

    [26] M. Gezimati, G. Singh. Terahertz cancer imaging and sensing: open research challenges and opportunities. Opt. Quantum Electron., 55, 727(2023).

    [27] C. Weisenstein, A. K. Wigger, M. Richter. THz detection of biomolecules in aqueous environments: status and perspectives for analysis under physiological conditions and clinical use. J. Infrared Millim. Terahertz Waves, 42, 607-646(2021).

    [28] M. Richter, Y. Loth, C. Weisenstein. Ultrasensitive marker-free biomolecular thz-detection for tumor-related analytics. Frequenz, 76, 627-637(2022).

    [29] M. Askari, H. Pakarzadeh, F. Shokrgozar. High Q-factor terahertz metamaterial for superior refractive index sensing. J. Opt. Soc. Am. B, 38, 3929-3936(2021).

    [30] D. Pozar. Microwave Engineering(2011).

    [31] L. Cao, S. Jia, M. D. Thomson. Can a terahertz metamaterial sensor be improved by ultra-strong coupling with a high-Q photonic resonator?. Opt. Express, 30, 13659-13672(2022).

    [32] M. A. Seo, H. R. Park, S. M. Koo. Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit. Nat. Photonics, 3, 152-156(2009).

    [33] Y.-M. Bahk, S. Han, J. Rhie. Ultimate terahertz field enhancement of single nanoslits. Phys. Rev. B, 95, 075424(2017).

    [34] S. Adak, L. N. Tripathi. Nanoantenna enhanced terahertz interaction of biomolecules. Analyst, 144, 6172-6192(2019).

    [35] C. Gerry, P. Knight. Introductory Quantum Optics(2004).

    [36] X. Yan, M. S. Yang, Z. Zhang. The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells. Biosens. Bioelectron., 126, 485-492(2019).

    [37] M. Abdolrazzaghi, M. Daneshmand, A. K. Iyer. Strongly enhanced sensitivity in planar microwave sensors based on metamaterial coupling. IEEE Trans. Microw. Theory Tech., 66, 1843-1855(2018).

    [38] Y. Cao, C. Ruan, K. Chen. Research on a high-sensitivity asymmetric metamaterial structure and its application as microwave sensor. Sci. Rep., 12, 1255(2022).

    [39] Y. K. Srivastava, R. T. Ako, M. Gupta. Terahertz sensing of 7 nm dielectric film with bound states in the continuum metasurfaces. Appl. Phys. Lett., 115, 151105(2019).

    [40] M. F. Limonov, M. V. Rybin, A. N. Poddubny. Fano resonances in photonics. Nat. Photonics, 11, 543-554(2017).

    [41] Y. Hu, M. Tong, S. Hu. Reassessing Fano resonance for broadband, high-efficiency, and ultrafast terahertz wave switching. Adv. Sci., 10, 2204494(2023).

    [42] D. R. Abujetas, N. van Hoof, S. ter Huurne. Spectral and temporal evidence of robust photonic bound states in the continuum on terahertz metasurfaces. Optica, 6, 996-1001(2019).

    [43] J. Ding, L. Huang, Y. Luo. Multi-band polarization–independent quasi-bound states in the continuum based on tetramer-based metasurfaces and their potential application in terahertz microfluidic biosensing. Adv. Opt. Mater., 11, 2300685(2023).

    [44] F. Yang, J. Li, L. Wu. Bending sensing based on quasi bound states in the continuum in flexible terahertz metasurface. Adv. Opt. Mater., 11, 2300909(2023).

    [45] D. Schurig, J. J. Mock, D. R. Smith. Electric-field-coupled resonators for negative permittivity metamaterials. Appl. Phys. Lett., 88, 041109(2006).

    [46] W. Withayachumnankul, C. Fumeaux, D. Abbott. Compact electric-LC resonators for metamaterials. Opt. Express, 18, 25912-25921(2010).

    [47] I. Jáuregui-López, P. Rodríguez-Ulibarri, A. Urrutia. Labyrinth metasurface absorber for ultra-high-sensitivity terahertz thin film sensing. Phys. Status Solidi, 12, 1800375(2018).

    [48] M. Gupta, Y. K. Srivastava, M. Manjappa. Sensing with toroidal metamaterial. Appl. Phys. Lett., 110, 121108(2017).

    [49] A. J. Deninger, A. Roggenbuck, S. Schindler. 2.75  THz tuning with a triple-DFB laser system at 1550  nm and InGaAs photomixers. J. Infrared Millim. Terahertz Waves, 36, 269-277(2015).

    [50] T. Q. Li, H. Liu, T. Li. Suppression of radiation loss by hybridization effect in two coupled split-ring resonators. Phys. Rev. B, 80, 115113(2009).

    Lei Cao, Fanqi Meng, Esra Özdemir, Yannik Loth, Merle Richter, Anna Katharina Wigger, Maira Beatriz Pérez Sosa, Alaa Jabbar Jumaah, Shihab Al-Daffaie, Peter Haring Bolívar, Hartmut G. Roskos, "Interdigitated terahertz metamaterial sensors: design with the dielectric perturbation theory," Photonics Res. 12, 1115 (2024)
    Download Citation