• Journal of Synthetic Crystals
  • Vol. 52, Issue 8, 1458 (2023)
LI Jianing1,2,3,4,5,*, GE Xin1,2,3,4,5, HUANG Zixuan1,2,3,4,5, LIU Zhen1,2,3,4,5..., WANG Pengyang1,2,3,4,5, SHI Biao1,2,3,4,5, ZHAO Ying1,2,3,4,5 and ZHANG Xiaodan1,2,3,4,5|Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • 5[in Chinese]
  • show less
    DOI: Cite this Article
    LI Jianing, GE Xin, HUANG Zixuan, LIU Zhen, WANG Pengyang, SHI Biao, ZHAO Ying, ZHANG Xiaodan. Effect of Sputtered NiOx Modified by Self-Assembled Layer on Performance of Blade-Coated Wide-Bandgap Perovskite Solar Cells[J]. Journal of Synthetic Crystals, 2023, 52(8): 1458 Copy Citation Text show less
    References

    [1] DI GIROLAMO D, DI GIACOMO F, MATTEOCCI F, et al. Progress, highlights and perspectives on NiO in perovskite photovoltaics[J]. Chemical Science, 2020, 11(30): 7746-7759.

    [2] LIU C, CHENG Y B, GE Z Y. Understanding of perovskite crystal growth and film formation in scalable deposition processes[J]. Chemical Society Reviews, 2020, 49(6): 1653-1687.

    [3] XIAO Y F, ZUO C T, ZHONG J X, et al. Large-area blade-coated solar cells: advances and perspectives[J]. Advanced Energy Materials, 2021, 11(21): 2100378.

    [4] ZHONG J X, WU W Q, DING L M, et al. Blade-coating perovskite films with diverse compositions for efficient photovoltaics[J]. Energy & Environmental Materials, 2021, 4(3): 277-283.

    [5] WANG P Y, CHEN B B, LI R J, et al. 2D perovskite or organic material matter? Targeted growth for efficient perovskite solar cells with efficiency exceeding 24%[J]. Nano Energy, 2022, 94: 106914.

    [6] WANG P Y, CHEN B B, LI R J, et al. Cobalt chloride hexahydrate assisted in reducing energy loss in perovskite solar cells with record open-circuit voltage of 1.20 V[J]. ACS Energy Letters, 2021, 6(6): 2121-2128.

    [7] WANG P Y, LI R J, CHEN B B, et al. Gradient energy alignment engineering for planar perovskite solar cells with efficiency over 23%[J]. Advanced Materials, 2020, 32(6): 1905766.

    [8] NREL. Best research-cell efficiency chart [EB/OL]. (2023-02-13).https://www.nrel.gov/pv/cell-efficiency.html.

    [9] LI R J, CHEN B B, REN N Y, et al. CsPbCl3-cluster-widened bandgap and inhibited phase segregation in a wide-bandgap perovskite and its application to NiOx-based perovskite/silicon tandem solar cells[J]. Advanced Materials, 2022, 34(27): e2201451.

    [10] LI F Z, DENG X, QI F, et al. Regulating surface termination for efficient inverted perovskite solar cells with greater than 23% efficiency[J]. Journal of the American Chemical Society, 2020, 142(47): 20134-20142.

    [11] YE S Y, RAO H X, YAN W B, et al. A strategy to simplify the preparation process of perovskite solar cells by co-deposition of a hole-conductor and a perovskite layer[J]. Advanced Materials, 2016, 28(43): 9648-9654.

    [12] CHEN W, ZHOU Y C, WANG L J, et al. Molecule-doped nickel oxide: verified charge transfer and planar inverted mixed cation perovskite solar cell[J]. Advanced Materials, 2018, 30(20): 1800515.

    [13] ZHANG B J, SU J, GUO X, et al. NiO/perovskite heterojunction contact engineering for highly efficient and stable perovskite solar cells[J]. Advanced Science, 2020, 7(11): 1903044.

    [14] STEIRER K X, NDIONE P F, WIDJONARKO N E, et al. Enhanced efficiency in plastic solar cells via energy matched solution processed NiOx interlayers[J]. Advanced Energy Materials, 2011, 1(5): 813-820.

    [15] ZHANG Y H, YANG M F, DU J Y, et al. Modulation of Ni3+ and crystallization of dopant-free NiOx hole transporting layer for efficient p-i-n perovskite solar cells[J]. Electrochimica Acta, 2019, 319: 41-48.

    [16] LIU Y N, DUAN J J, ZHANG J K, et al. High efficiency and stability of inverted perovskite solar cells using phenethyl ammonium iodide-modified interface of NiOx and perovskite layers[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 771-779.

    [17] RU P B, BI E B, ZHANG Y, et al. High electron affinity enables fast hole extraction for efficient flexible inverted perovskite solar cells[J]. Advanced Energy Materials, 2020, 10(12): 1903487.

    [18] WANG T, XIE M Y, ABBASI S, et al. High efficiency perovskite solar cells with tailorable surface wettability by surfactant[J]. Journal of Power Sources, 2020, 448: 227584.

    [19] ZHAO B D, LEE L C, YANG L, et al. In situ atmospheric deposition of ultrasmooth nickel oxide for efficient perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2018, 10(49): 41849-41854.

    [20] JOT M, BERTRAM T, KOUSHIK D, et al. 21.6%-efficient monolithic perovskite/Cu(In, Ga)Se2 tandem solar cells with thin conformal hole transport layers for integration on rough bottom cell surfaces[J]. ACS Energy Letters, 2019, 4(2): 583-590.

    [21] LI G J, JIANG Y B, DENG S B, et al. Overcoming the limitations of sputtered nickel oxide for high-efficiency and large-area perovskite solar cells[J]. Advanced Science, 2017, 4(12): 1700463.

    [22] ISLAM R, CHEN G, RAMESH P, et al. Investigation of the changes in electronic properties of nickel oxide (NiOx) due to UV/ozone treatment[J]. ACS Applied Materials & Interfaces, 2017, 9(20): 17201-17207.

    [23] CHEN W, ZHOU Y C, CHEN G C, et al. Alkali chlorides for the suppression of the interfacial recombination in inverted planar perovskite solar cells[J]. Advanced Energy Materials, 2019, 9(19): 1803872.

    [24] KIM J H, LIANG P W, WILLIAMS S T, et al. High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer[J]. Advanced Materials, 2015, 27(4): 695-701.

    [25] LI Z J, JO B H, HWANG S J, et al. Bifacial passivation of organic hole transport interlayer for NiOx-based p-i-n perovskite solar cells[J]. Advanced Science, 2019, 6(6): 1802163.

    [26] ZHUMAGALI S, ISIKGOR F H, MAITY P, et al. Linked nickel oxide/perovskite interface passivation for high-performance textured monolithic tandem solar cells[J]. Advanced Energy Materials, 2021, 11(40): 2101662.

    [27] BOYD C C, SHALLCROSS R C, MOOT T, et al. Overcoming redox reactions at perovskite-nickel oxide interfaces to boost voltages in perovskite solar cells[J]. Joule, 2020, 4(8): 1759-1775.

    [28] LIAN Q, WANG P L, WANG G L, et al. Doping free and amorphous NiOx film via UV irradiation for efficient inverted perovskite solar cells[J]. Advanced Science, 2022, 9(18): 2201543.

    [29] LIAN X M, CHEN J H, SHAN S Q, et al. Polymer modification on the NiOx hole transport layer boosts open-circuit voltage to 1.19 V for perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2020, 12(41): 46340-46347.

    [30] ZHANG J Q, YANG J, DAI R Y, et al. Elimination of interfacial lattice mismatch and detrimental reaction by self-assembled layer dual-passivation for efficient and stable inverted perovskite solar cells[J]. Advanced Energy Materials, 2022, 12(18): 2103674.

    [31] AYDIN E, TROUGHTON J, DE BASTIANI M, et al. Room-temperature-sputtered nanocrystalline nickel oxide as hole transport layer for p-i-n perovskite solar cells[J]. ACS Applied Energy Materials, 2018, 1(11): 6227-6233.

    LI Jianing, GE Xin, HUANG Zixuan, LIU Zhen, WANG Pengyang, SHI Biao, ZHAO Ying, ZHANG Xiaodan. Effect of Sputtered NiOx Modified by Self-Assembled Layer on Performance of Blade-Coated Wide-Bandgap Perovskite Solar Cells[J]. Journal of Synthetic Crystals, 2023, 52(8): 1458
    Download Citation