• Optics and Precision Engineering
  • Vol. 20, Issue 3, 541 (2012)
GAO Peng*, YAN Guo-zheng, WANG Zhi-wu, JIANG Ping-ping, and LIU Hua
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/ope.20122003.0541 Cite this Article
    GAO Peng, YAN Guo-zheng, WANG Zhi-wu, JIANG Ping-ping, LIU Hua. Flexible locomotion system for gastrointestinal microrobots[J]. Optics and Precision Engineering, 2012, 20(3): 541 Copy Citation Text show less
    References

    [1] IDDAN G, MERON G, GLUKHOVSKY A, et al.. Wireless capsule endoscopy [J]. Nature, 2000, 405(5):417-418.

    [2] SWAIN P. Wireless capsule endoscopy [J]. Gut, 2003, 52: 48-50.

    [3] TOENNIES J L, TORTORA G, SIMI M, et al.. Swallowable medical devices for diagnosis and surgery: the state of the art[J]. Proc Institution of Mechanical Engineers, Part C: J. Mechanical Engineering Sci., 2010, 224(7): 1397-1414.

    [4] GUO X D, YAN R G, YAN G ZH. Calibration method for wirelessly localizing capsule endoscopy [J]. Opt. Precision Eng., 2010, 18(12): 2650-2655. (in Chinese)

    [5] PAN G B, YAN G ZH, ZHANG M Q, et al.. Application of probabilistic neural network and differential evolution to bleeding detection in wireless capsule endoscopy images[J]. Opt. Precision Eng., 2010, 18(6): 1429-1435. (in Chinese)

    [6] CHI P C, ZHANG W P, CHEN W Y, et al.. Design and fabrication of an SU-8 biomimetic flapping-wing micro air vehicle by MEMS technology [J]. Opt. Precision Eng., 2011, 33(3): 366-370. (in Chinese)

    [7] WANG K D, YAN G ZH, MA G Y, et al.. An earthworm-like robotic endoscope system for human intestine: design, analysis, and experiment [J]. Annals of Biomedical Engineering, 2008, 37(1): 210-221.

    [8] GAO P, YAN G ZH, WANG ZH W, et al.. A robotic endoscope based on minimally invasive locomotion and wireless techniques for human colon [J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2011, 7(3): 256-267.

    [9] QUIRINI M, MENCIASSI A, SCAPELLATO S, et al.. Design and fabrication of a motor legged capsule for the active exploration of the gastrointestinal tract [J]IEEE/ASME Trans. Mechatronics, 2008, 13(2): 169-179.

    [10] HARADA K, OETOMO D, SUSILO E, et al.. A reconfigurable modular robotic endoluminal surgical system: vision and preliminary results [J]. Robotica, 2010, 28(2):171-183.

    [11] GAO M Y, HU CH ZH, CHEN ZH ZH, et al.. Design and fabrication of a magnetic propulsion system for self-propelled capsule endoscope [J]. IEEE Trans. Biomedical Engineering, 2010, 57(12): 2891-2902.

    [12] ZHANG Y SH, JIANG SH Y, ZHANG X W, et al.. A variable diameter capsule robot based on multiple wedge effects [J]. IEEE/ASME Trans Mechatronics, 2011, 16(2): 241-254.

    [13] KIM H M, YANG S, KIN J, et al.. Active locomotion of a paddling-based capsule endoscope in an in vitro and in vivo experiment [J]. Gastrointestinal Endoscopy, 2010, 72(2): 381-387.

    [14] MENCIASSI A, DARIO P. Bio-inspired solutions for locomotion in the gastrointestinal tract: background and perspectives[J]. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2003:2287-2298.

    [15] KIM B, LEE S, PARK J H, et al.. Inchworm-like microrobot for capsule endoscope [C] IEEE International Conference on Robotics and Biomimetics, Shenyang, P.R. China, 2004: 458-463.

    CLP Journals

    [1] HE Shu, YAN Guo-zheng, KE Quan, WANG Zhi-wu. Design and experiment of an intestinal anchoring mechanism[J]. Optics and Precision Engineering, 2015, 23(1): 102

    GAO Peng, YAN Guo-zheng, WANG Zhi-wu, JIANG Ping-ping, LIU Hua. Flexible locomotion system for gastrointestinal microrobots[J]. Optics and Precision Engineering, 2012, 20(3): 541
    Download Citation