• Journal of Terahertz Science and Electronic Information Technology
  • Vol. 18, Issue 4, 738 (2020)
ZHANG Fujie and ZUO Xu*
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.11805/tkyda2018245 Cite this Article
    ZHANG Fujie, ZUO Xu. Proton diffusion mechanism in a-SiO2[J]. Journal of Terahertz Science and Electronic Information Technology , 2020, 18(4): 738 Copy Citation Text show less
    References

    [1] FLEETWOOD D M. Effects of hydrogen transport and reactions on microelectronics radiation response and reliability[J]. Microelectronics Reliability, 2002,42(4-5):523-541.

    [2] RASHKEEV S N,FLEETWOOD D M,SCHRIMPF R D,et al. Effects of hydrogen motion on interface trap formation and annealing[J]. IEEE Transactions on Nuclear Science, 2004,51(6):3158-3165.

    [3] CHEN X J,BARNABY H J,VERMEIRE B,et al. Mechanisms of enhanced radiation-induced degradation due to excess molecular hydrogen in bipolar oxides[J]. IEEE Transactions on Nuclear Science, 2007,54(6):1913-1919.

    [4] XIONG K,ROBERTSON J,CLARK S J. Behavior of hydrogen in wide band gap oxides[J]. Journal of Applied Physics, 2007, 102(8):083710-1-083710-13.

    [5] GODET J,PASQUARELLO A. Ab initio study of charged states of H in amorphous SiO2[J]. Microelectronic Engineering, 2005(80):288-291.

    [6] BUNSON P,VENTRA Di M,PANTELIDES S,et al. Ab initio calculations of H+ energetics in SiO2:implications for transport[J]. IEEE Transactions on Nuclear Science, 1999,46(6):1568-1573.

    [7] GODET J,PASQUARELLO A. Proton diffusion mechanism in amorphous SiO2[J]. Physical Review Letters, 2006,97(15):155901.

    [8] DEVINE R A B,HERRERA G V. Electric-field-induced transport of protons in amorphousSiO2[J]. Physical Review B, 2001,63 (23):233406-1-233406-4.

    [9] RASHKEEV S N,FLEETWOOD D M,SCHRIMPF R D,et al. Dual behavior of H+ at Si-SiO2 interfaces:mobility versus trapping[J]. Applied Physics Letters, 2002,81(10):1839-1841.

    [10] BATYREV I G,HUGHART D,DURAND R,et al. Effects of hydrogen on the radiation response of bipolar transistors:experiment and modeling[J]. IEEE Transactions on Nuclear Science, 2008,55(6):3039-3045.

    [11] RASHKEEV S,FLEETWOOD D,SCHRIMPF R,et al. Proton-induced defect generation at the Si-SiO2 interface[J]. IEEE Transactions on Nuclear Science, 2001,48(6):2086-2092.

    [12] SHEPPARD D,TERRELL R,HENKELMAN G. Optimization methods for finding minimum energy paths[J]. The Journal of Chemical Physics, 2008,128(13):134106-1-134106-10.

    [13] KRESSE G,FURTHMULLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B Condens Matter, 1996,54(16):11169-11186.

    [14] PERDEW J P,BURKE K,ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996,77(18):3865-3868.

    [16] EL-SAYED A M,WATKINS M B,AFANAS'EV V V,et al. Nature of intrinsic and extrinsic electron trapping in SiO2[J]. Physical Review B, 2014,89(12):125201-1-125201-10.

    [17] YUE Y,SONG Y,ZUO X. First principles study of oxygen vacancy defects in amorphous SiO2[J]. AIP Advances, 2017,7(1):015309.

    [18] SHEIKHOLESLAM S A,MANZANO H,GRECU C,et al. Reduced hydrogen diffusion in strained amorphous SiO2:understanding aging in MOSFET devices[J]. Journal of Materials Chemistry C, 2016,4(34):8104-8110.

    [19] GRISCOM D L. Diffusion of radiolytic molecular hydrogen as a mechanism for the post-irradiation buildup of interface states in SiO2-on-Si structures[J]. Journal of Applied Physics, 1985,58(7):2524-2533.

    [20] TUTTLE B. Energetics and diffusion of hydrogen in SiO2[J]. Physical Review B, 2000,61(7):4417-4420.

    [21] YUE Y,WANG J,ZHANG Y,et al. Interactions of atomic hydrogen with amorphous SiO2[J]. Physica B:Condensed Matter, 2018(533):5-11.

    ZHANG Fujie, ZUO Xu. Proton diffusion mechanism in a-SiO2[J]. Journal of Terahertz Science and Electronic Information Technology , 2020, 18(4): 738
    Download Citation