• Frontiers of Optoelectronics
  • Vol. 6, Issue 3, 318 (2013)
Saeed OLYAEE*, Zahra DASHTBAN, and Muhammad Hussein DASHTBAN
Author Affiliations
  • Nano-photonics and Optoelectronics Research Laboratory, Faculty of Electrical and Computer Engineering, Shahid Rajaee Teacher Training University, Lavizan, 16788-15811, Tehran, Iran
  • show less
    DOI: 10.1007/s12200-013-0337-7 Cite this Article
    Saeed OLYAEE, Zahra DASHTBAN, Muhammad Hussein DASHTBAN. Design and implementation of super-heterodyne nano-metrology circuits[J]. Frontiers of Optoelectronics, 2013, 6(3): 318 Copy Citation Text show less
    References

    [1] Schattenburg M L, Smith H I. The critical role of metrology in nanotechnology. SPIE Proceedings, 2001, 4608: 116-124

    [2] Burggraaf P. Optical lithography to 2000 and beyond. Solid State Technology, 1999, 42(2): 31-41

    [3] Lawall J, Kessler E. Michelson interferometry with 10 pm accuracy. Review of Scientific Instruments, 2000, 71(7): 2669-2676

    [4] Olyaee S, Nejad M. Nonlinearity and frequency-path modelling of three-longitudinal-mode nanometric displacement measurement system. IET Optoelectronics, 2007, 1(5): 211-220

    [5] Yokoyama T, Araki T, Yokoyama S, Suzuki N. A subnanometer heterodyne interferometric system with improved phase sensitivity using a three-longitudinal-mode He-Ne laser. Measurement Science and Technology, 2001, 12(2): 157-162

    [6] Olyaee S, Hamedi S. A low-nonlinearity laser heterodyne interferometer with quadrupled resolution in the displacement measurement. Arabian Journal for Science and Engineering, 2011, 36(2): 279-286

    [7] Guo J H, Zhang Y, Shen S. Compensation of nonlinearity in a new optical heterodyne interferometer with doubled measurement resolution. Optics Communications, 2000, 184(1-4): 49-55

    [8] Olyaee S, Nejad S M. Error analysis, design and modeling of an improved heterodyne nano-displacement interferometer. Iranian Journal of Electrical and Electronic Engineering, 2007, 3(3-4): 53-63

    [9] Quenelle R C. Nonlinearity in interferometric measurements. Hewlett-Parkard Journal, 1983, 34(10): 3-13

    [10] Sutton C M. Non-linearity in the length measurement using hetrodyne laser Michelson interferometery. Journal of Physics E, Scientific Instruments, 1987, 20(10): 1290-1292

    [11] Cosijns S J A G, Haitjema H, Schellekens P H J. Modeling and verifying non-linearities in heterodyne displacement interferometry. Precision Engineering, 2002, 26(4): 448-455

    [12] Badami V G, Patterson S R. A frequency domain method for the measurement of nonlinearity in heterodyne interferometry. Precision Engineering, 2000, 24(1): 41-49

    [13] Olyaee S, Yoon T H, Hamedi S. Jones matrix analysis of frequency mixing error in three-longitudinal-mode laser heterodyne interferometer. IET Optoelectronics, 2009, 3(5): 215-224

    [14] Li Z, Herrmann K, Pohlenz F. A neural network approach to correcting nonlinearity in optical interferometers. Measurement Science and Technology, 2003, 14(3): 376-381

    [15] Heo G, Lee W, Choi S, Lee J, You K. Adaptive neural network approach for nonlinearity compensation in laser interferometer. Knowledge-Based Intelligent Information and Engineering Systems, 2007, 4694: 251-258

    [16] Olyaee S, Ebrahimpour R, Hamedi S. Modeling and compensation of periodic nonlinearity in two-mode interferometer using neural networks. Journal of the Institution of Electronics and Telecommunication Engineers, 2010, 56(2): 102-110

    [17] Baird K M. A new method in optical interferometry. Journal of the Optical Society of America, 1954, 44(1): 11-13

    [18] Bruce C F, Hill R M. Wavelengths of krypton 86, mercury 198, and cadmium 114. Australian Journal of Physics, 1961, 14(1): 64-88

    [19] Peck E R, Obetz S W. Wavelength or length measurement by reversible fringe counting. Journal of the Optical Society of America, 1953, 43(6): 505-509

    [20] Polster H D, Pastor J, Scott R M, Crane R, Langenbeck P H, Pilston R, Steinberg G. New developments in interferometry. Applied Optics, 1969, 8(3): 521-556

    [21] Lavan M J, Cadwallender W K, Deyoung T F. Heterodyne interferometer to determine relative optical phase changes. Review of Scientific Instruments, 1975, 46(5): 525-527

    [22] Hariharan P. Optical Interferometry. 2nd ed. San Diego: Academic Press, 2003

    [23] Lee T H. The Design of CMOS Radio-Frequency Integrated Circuits. 2nd ed. Cambridge: Cambridge University Press, 2004

    [24] Demarest F C. High-resolution, high speed, low data age uncertainty, heterodyne displacement measuring interferometer electronics. Measurement Science and Technology, 1998, 9(7): 1024-1030

    [25] Olyaee S, Hamedi S, Dashtban Z. Design of electronic sections for nano-displacement measuring system. Frontiers of Optoelectronics in China, 2010, 3(4): 376-381

    [26] TDC-GP1 manual, time-to-digital converter, http://www.acam.de

    Saeed OLYAEE, Zahra DASHTBAN, Muhammad Hussein DASHTBAN. Design and implementation of super-heterodyne nano-metrology circuits[J]. Frontiers of Optoelectronics, 2013, 6(3): 318
    Download Citation