[2] International Telecommunication Union. General Secretariat:Radio regulations; additional radio regulations, resolutions and recommendations
[3] Shibuya, T., Kawase, K.: 17-Terahertz applications in tomographic imaging and material spectroscopy: a review. In: Handbook of Terahertz Technology for Imaging, Sensing and Communications.Ed D. Saeedkia. Woodhead Publishing (2013)
[4] Siegel, P.H.: Terahertz technology. IEEE Trans Microw Theory Tech 50(3), 910–928 (2002)
[5] Slocum, D.M., Slingerland, E.J., Giles, R.H., Goyette, T.M.:Atmospheric absorption of terahertz radiation and water vapor continuum effects. J Quant Spectrosc Radiat Transf 127, 49–63(2013)
[6] Yamashita, M., Kawase, K., Otani, C., Kiwa, T., Tonouchi, M.:Imaging of large-scale integrated circuits using laser-terahertz emission microscopy. Opt Express 13(1), 115–120 (2005)
[7] Federici, J.F., Schulkin, B., Huang, F., Gary, D., Barat, R.,Oliveira, F., Zimdars, D.: THz imaging and sensing for security applications—explosives, weapons and drugs. Semicond Sci Technol 20(7), S266–S280 (2005)
[8] Koenig, S., Lopez-Diaz, D., Antes, J., Boes, F., Henneberger,R., Leuther, A., Tessmann, A., Schmogrow, R., Hillerkuss, D.,Palmer, R., Zwick, T., Koos, C., Freude, W., Ambacher, O.,Leuthold, J., Kallfass, I.: Wireless sub-THz communication system with high data rate. Nat Photonics 7(12), 977–981 (2013)
[9] Nagel, M., F-rst, M., Kurz, H.: THz biosensing devices: fundamentals and technology. J Phys Condens Matter 18(18), S601–S618 (2006)
[10] Zhao, L., Hao, Y.H., Peng, R.Y.: Advances in the biological effects of terahertz wave radiation. Mil Med Res 1(1), 26 (2014)
[11] Herrmann, E., Gao, H., Huang, Z., Sitaram, S.R., Ma, K., Wang,X.: Modulators for mid-infrared and terahertz light. J Appl Phys128(14), 140903 (2020)
[12] Chen, H.T., Padilla, W.J., Zide, J.M., Gossard, A.C., Taylor, A.J.,Averitt, R.D.: Active terahertz metamaterial devices. Nature444(7119), 597–600 (2006)
[13] Shrekenhamer, D., Rout, S., Strikwerda, A.C., Bingham, C.,Averitt, R.D., Sonkusale, S., Padilla, W.J.: High speed terahertz modulation from metamaterials with embedded high electron mobility transistors. Opt Express 19(10), 9968–9975 (2011)
[14] Dutta-Gupta, S., Dabidian, N., Kholmanov, I., Belkin, M.A.,Shvets, G.: Electrical tuning of the polarization state of light using graphene-integrated anisotropic metasurfaces. Philos Trans Royal Soc Math Phys Eng Sci 375(2090), 20160061 (2017)
[15] Miao, Z., Wu, Q., Li, X., He, Q., Ding, K., An, Z., Zhang, Y., Zhou,L.: Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces. Phys Rev X 5(4), 041027 (2015)
[16] Ju, L., Geng, B., Horng, J., Girit, C., Martin, M., Hao, Z., Bechtel,H.A., Liang, X., Zettl, A., Shen, Y.R., Wang, F.: Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol 6(10), 630–634 (2011)
[17] Wu, Y., La-o-vorakiat, C., Qiu, X., Liu, J., Deorani, P., Banerjee,K., Son, J., Chen, Y., Chia, E.E.M., Yang, H.: Graphene terahertz modulators by ionic liquid gating. Adv Mater 27(11), 1874–1879(2015)
[18] Si, G., Zhao, Y., Leong, E.S.P., Liu, Y.J.: Liquid-crystal-enabled active plasmonics: a review. Materials (Basel) 7(2), 1296–1317 (2014)
[19] Reuter, M., Vieweg, N., Fischer, B.M., Mikulicz, M., Koch, M.,Garbat, K., D-browski, R.: Highly birefringent, low-loss liquid crystals for terahertz applications. APL mater 1(1), 012107 (2013)
[20] Buchnev, O., Wallauer, J., Walther, M., Kaczmarek, M., Zheludev,N.I., Fedotov, V.A.: Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial.Appl Phys Lett. 103(14), 141904 (2013)
[21] Shrekenhamer, D., Chen, W.C., Padilla, W.J.: Liquid crystal tunable metamaterial absorber. Phys Rev Lett 110(17), 177403 (2013)
[22] Wang, L., Lin, X.W., Hu, W., Shao, G.H., Chen, P., Liang, L.J.,Jin, B.B., Wu, P.H., Qian, H., Lu, Y.N., Liang, X., Zheng, Z.G.,Lu, Y.Q.: Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes. Light Sci Appl 4(2), e253(2015)
[23] Driscoll, T., Kim, H.T., Chae, B.G., Kim, B.J., Lee, Y.W., Jokerst,N.M., Palit, S., Smith, D.R., Di Ventra, M., Basov, D.N.: Memory metamaterials. Science 325(5947), 1518–1521 (2009)
[24] Yahiaoui, R., Chase, Z.A., Kyaw, C., Seabron, E., Mathews, J.,Searles, T.A.: Dynamically tunable single-layer VO2/metasurface based THz cross-polarization converter. J Phys D Appl Phys 54(23), 235101 (2021)
[25] Nouman, M.T., Hwang, J.H., Faiyaz, M., Lee, K.J., Noh, D.Y.,Jang, J.H.: Vanadium dioxide based frequency tunable metasurface filters for realizing reconfigurable terahertz optical phase and polarization control. Opt Express 26(10), 12922–12929 (2018)
[26] Eyert, V.: The metal-insulator transitions of VO2:a band theoretical approach. Ann Phys 514(9), 650–704 (2002)
[27] Hashemi, M.R.M., Yang, S.H., Wang, T., Sepúlveda, N., Jarrahi,M.: Electronically-controlled beam-steering through vanadium dioxide metasurfaces. Sci Rep 6(1), 35439 (2016)
[28] Dong, K., Lou, S., Choe, H.S., Liu, K., You, Z., Yao, J., Wu, J.:Stress compensation for arbitrary curvature control in vanadium dioxide phase transition actuators. Appl Phys Lett 109(2), 023504(2016)
[29] Yang, Z., Ramanathan, S.: Breakthroughs in photonics 2014: phase change materials for photonics. Photonics J IEEE 7, 1–5 (2015)
[30] Chae, B., Youn, D.H., Kim, H.T., Sunglyul, M., Kang, K.: Fabrication and electrical properties of pure VO2 phase films. J Korean Phys Soc 44, 884–888 (2003)
[31] Kawakubo, T., Nakagawa, T.: Phase transition in VO2.J. Phys.Soc. Jpn 19(4), 517–519 (1964)
[32] Cai, H., Chen, S., Zou, C., Huang, Q., Liu, Y., Hu, X., Fu, Z.,Zhao, Y., He, H., Lu, Y.: Multifunctional hybrid metasurfaces for dynamic tuning of terahertz waves. Adv Opt Mater 6(14),1800257 (2018)
[33] Shu, F.Z., Yu, F.F., Peng, R.W., Zhu, Y.Y., Xiong, B., Fan, R.H.,Wang, Z.H., Liu, Y., Wang, M.: Dynamic plasmonic color generation based on phase transition of vanadium dioxide. Adv Opt Mater 6(7), 1700939 (2018)
[34] Shu, F.Z., Wang, J.N., Peng, R.W., Xiong, B., Fan, R.H., Gao,Y.J., Liu, Y., Qi, D.X., Wang, M.: Electrically driven tunable broadband polarization states via active metasurfaces based on Joule-heat-induced phase transition of vanadium dioxide. Laser Photonics Rev 15(10), 2100155 (2021)
[35] Pitchappa, P., Kumar, A., Singh, R., Lee, C., Wang, N.: Terahertz MEMS metadevices. J Micromech Microeng 31(11), 113001(2021)
[36] Huang, Y., Okatani, T., Inomata, N., Kanamori, Y.: A reconfigurable ladder-shaped THz metamaterial integrated with a microelectromechanical cantilever array. Appl Phys Lett 122(5), 051705(2023)
[37] Fu, Y., Xu, X., Lin, Y.S.: Actively programmable MEMS-based racetrack-shaped terahertz metamaterial. J Appl Phys 131(11),115301 (2022)
[38] Silalahi, H.M., Chiang, W.F., Shih, Y.H., Wei, W.Y., Su, J.Y.,Huang, C.Y.: Folding metamaterials with extremely strong electromagnetic resonance. Photon Res 10(9), 2215–2222(2022)
[39] Shih, K., Pitchappa, P., Manjappa, M., Ho, C.P., Singh, R., Yang,B., Singh, N., Lee, C.: Active MEMS metamaterials for THz bandwidth control. Appl Phys Lett 110(16), 161108 (2017)
[40] Kan, T., Isozaki, A., Kanda, N., Nemoto, N., Konishi, K., Takahashi,H., Kuwata-Gonokami, M., Matsumoto, K., Shimoyama,I.: Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMSspirals. Nat Commun 6(1), 8422 (2015)
[41] Fan, K., Padilla, W.J.: Dynamic electromagnetic metamaterials.Mater Today 18(1), 39–50 (2015)
[42] Liu, M., Susli, M., Silva, D., Putrino, G., Kala, H., Fan, S., Cole,M., Faraone, L., Wallace, V.P., Padilla, W.J., Powell, D.A., Shadrivov,I.V., Martyniuk, M.: Ultrathin tunable terahertz absorber based on MEMS-driven metamaterial. Microsyst Nanoeng 3(1),17033 (2017)
[43] Zheludev, N.I., Plum, E.: Reconfigurable nanomechanical photonic metamaterials. Nat Nanotechnol 11(1), 16–22 (2016)
[44] Kan, T., Isozaki, A., Kanda, N., Nemoto, N., Konishi, K., Kuwata-Gonokami, M., Matsumoto, K., Shimoyama, I.: Spiral metamaterial for active tuning of optical activity. Appl Phys Lett 102(22),221906 (2013)
[45] Zhao, X., Schalch, J., Zhang, J., Seren, H.R., Duan, G., Averitt,R.D., Zhang, X.: Electromechanically tunable metasurface transmission waveplate at terahertz frequencies. Optica 5(3),303–310 (2018)
[46] F-rst, M., Manzoni, C., Kaiser, S., Tomioka, Y., Tokura, Y.,Merlin, R., Cavalleri, A.: Nonlinear phononics as an ultrafast route to lattice control. Nat Phys 7(11), 854–856 (2011)
[47] Fleischer, S., Zhou, Y., Field, R., Nelson, K.: Molecular orientation and alignment by intense single-cycle THz pulses. Phys Rev Lett 10(16), 163603 (2011)
[48] Kong, D., Wu, X., Wang, B., Nie, T., Xiao, M., Pandey, C.,Gao, Y., Wen, L., Zhao, W., Ruan, C., Miao, J., Li, Y., Wang,L.: Broadband spintronic terahertz emitter with magnetic-field manipulated polarizations. Adv Opt Mater 7(20), 1900487 (2019)
[49] Wu, W., Lendinez, S., Kaffash, M.T., Schaller, R.D., Wen, H.,Jungfleisch, M.B.: Controlling polarization of spintronic THz emitter by remanent magnetization texture. Appl Phys Lett 121(5), 052401 (2022)
[50] Agarwal, P., Huang, L., Ter Lim, S., Singh, R.: Electric-field control of nonlinear THz spintronic emitters. Nat Commun13(1), 4072 (2022)
[51] Federici, J., Moeller, L.: Review of terahertz and subterahertz wireless communications. J Appl Phys 107(11), 111101 (2010)
[52] Kim, T.T., Oh, S.S., Kim, H.D., Park, H.S., Hess, O., Min, B.,Zhang, S.: Electrical access to critical coupling of circularly polarized waves in graphene chiral metamaterials. Sci Adv 3(9),e1701377 (2017)
[53] Qi, T., Shin, Y.H., Yeh, K.L., Nelson, K.A., Rappe, A.M.: Collective coherent control: synchronization of polarization in ferroelectric PbTiO3 by shaped THz fields. Phys Rev Lett 102(24),247603 (2009)
[54] Tinoco, I. Jr, Cantor, C.R.: Application of optical rotatory dispersion and circular dichroism to the study of biopolymers. In:Methods of Biochemical Analysis. (1970)
[55] Song, Z., Zhang, L., Liu, Q.H.: High-efficiency broadband cross polarization converter for near-infrared light based on anisotropic plasmonic meta-surfaces. Plasmonics 11(1), 61–64 (2016)
[56] Zhang, B., Lv, L., He, T., Chen, T., Zang, M., Zhong, L., Wang,X., Shen, J., Hou, Y.: Active terahertz device based on optically controlled organometal halide perovskite. Appl Phys Lett 107(9),093301 (2015)
[57] Guo, J., Kim, J.Y., Yang, S., Xu, J., Choi, Y.C., Stein, A., Murray,C.B., Kotov, N.A., Kagan, C.R.: Broadband circular polarizers via coupling in 3D plasmonic meta-atom arrays. ACS Photonics 8(5),1286–1292 (2021)
[58] Liu, Z., Du, H., Li, J., Lu, L., Li, Z.Y., Fang, N.X.: Nano-kirigami with giant optical chirality. Sci Adv 4(7), eaat4436 (2018)
[59] Wang, Z., Jing, L., Yao, K., Yang, Y., Zheng, B., Soukoulis, C.M.,Chen, H., Liu, Y.: Origami-based reconfigurable metamaterials for tunable chirality. Adv Mater Adv Mater 29(27), 1700412 (2017)
[60] Landau J., Kearsley L.P., Pitaevskii E.M., Lifshitz J.B.: Sykes:Electrodynamics of Continuous Media (1984)
[61] McConney, M.E., Kulkarni, D.D., Jiang, H., Bunning, T.J.,Tsukruk, V.V.: A new twist on scanning thermal microscopy.Nano Lett 12(3), 1218–1223 (2012)
[62] Zheng, L.S., Lu, M.S.C.: A large-displacement CMOS micromachined thermal actuator with comb electrodes for capacitive sensing.Sens Actuators A Phys. 136(2), 697–703 (2007)
[63] King, T.G., Preston, M.E., Murphy, B.J.M., Cannell, D.S.: Piezoelectric ceramic actuators: a review of machinery applications.Precis Eng 12(3), 131–136 (1990)
[64] Wu, C., Kahn, M., Moy, W.: Piezoelectric ceramics with functional gradients: a new application in material design. J Am Ceram Soc 79(3), 809–812 (1996)
[65] Makino, E., Mineta, T., Mitsunaga, T., Kawashima, T., Shibata,T.: Sphincter actuator fabricated with PDMS/SMA bimorph cantilevers.Microelectron Eng 88(8), 2662–2665s (2011)
[66] Krulevitch, P., Lee, A.P., Ramsey, P.B., Trevino, J.C., Hamilton,J., Northrup, M.A.: Thin film shape memory alloy microactuators.J Microelectromech Syst 5(4), 270–282 (1996)
[67] Cavalleri, A., Tóth, C., Siders, C.W., Squier, J.A., Ráksi, F., Forget,P., Kieffer, J.C.: Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition. Phys Rev Lett 87(23),237401 (2001)
[68] Wang, X., Dong, K., Choe, H.S., Liu, H., Lou, S., Tom, K.B.,Bechtel, H.A., You, Z., Wu, J., Yao, J.: Multifunctional microelectro-opto-mechanical platform based on phase-transition materials.Nano Lett 18(3), 1637–1643 (2018)
[69] Liu, K., Cheng, C., Cheng, Z., Wang, K., Ramesh, R., Wu, J.:Giant-amplitude, high-work density microactuators with phase transition activated nanolayer bimorphs. Nano Lett 12(12), 6302–6308 (2012)
[70] Nikishkov, G.P.: Curvature estimation for multilayer hinged structures with initial strains. J Appl Phys 94(8), 5333–5336 (2003)
[71] Sepúlveda, N., Rúa, A., Cabrera, R., Fernández, F.: Young’s modulus of VO2 thin films as a function of temperature including insulator-to-metal transition regime. Appl Phys Lett 92(19),191913 (2008)
[72] Merle, B.: Mechanical Properties of Thin Films Studied by Bulge Testing (2013)
[73] Guo, X.G., Zhou, Z.F., Sun, C., Li, W.H., Huang, Q.A.: A simple extraction method of young’s modulus for multilayer films in MEMS applications. Micromachines 8(7), 201 (2017)
[74] Kanda, N., Konishi, K., Kuwata-Gonokami, M.: Terahertz wave polarization rotation with double layered metal grating of complimentary chiral patterns. Opt Express 15(18), 11117–11125 (2017)