• Acta Photonica Sinica
  • Vol. 49, Issue 7, 706002 (2020)
Dong-ming WU, Shang-lin HOU*, Jing-li LEI, Dao-bin WANG, and Xiao-xiao LI
Author Affiliations
  • School of Science, Lanzhou University of Technology, Lanzhou 730050, China
  • show less
    DOI: 10.3788/gzxb20204907.0706002 Cite this Article
    Dong-ming WU, Shang-lin HOU, Jing-li LEI, Dao-bin WANG, Xiao-xiao LI. Superluminal Propagation Induced by Forward Stimulated Brillouin Scattering in Small-core Photonic Crystal Fibers[J]. Acta Photonica Sinica, 2020, 49(7): 706002 Copy Citation Text show less

    Abstract

    The forward stimulated Brillouin scattering based fast light in small-core photonic crystal fibers is theoretically investigated. Three-wave coupled wave equations of forward stimulated Brillouin scattering in frequency domain were derived to calculate the group refractive index and gain coefficient in small-core photonic crystal fibers by Fourier transformation, then optical and acoustic field distribution, advancement and broadening factor of signal pulses induced by forward stimulated Brillouin scattering were simulated by the finite element method. Tight confinement of the optical fundamental mode and acoustic modes strengthens nonlinear interaction in the small-core photonic crystal fibers and results in strong SBS and large advancement of time. The time advancement grows nonlinearly with the transmission distance of signal light increasing, and the signal pulses are compressed. The pulse broadening factor gradually levels off with the growth of the initial pulse width. The time advancement of 21.76 ns and pulse broadening factor of 0.77 are evaluated at the transmission distance of 70 m, the initial pulse width of 200 ns and the pumping pulse power of 600 mW.
    $ \left\{ {Ep(z,t)z+neffcEp(z,t)t=iωpγeQ02neffcρ0Eas(z,t)U(z,t)Eas(z,t)z+neffcEas(z,t)t=iωasγeQ02neffcρ0Ep(z,t)U(z,t)2iΩU(z,t)t+(Ω2Ωa2+iΩΓB)U(z,t)=ε0γeQ1EP(z,t)Eas(z,t)} \right. $ (1)

    View in Article

    $ \dfrac{{\partial {E_{{\rm{as}}}}\left( {z, \omega } \right)}}{{\partial z}} + {\rm{i}}\dfrac{{{n_{{\rm{eff}}}}}}{c}\left( {{\omega _{{\rm{as}}}} - \omega } \right){E_{{\rm{as}}}}\left( {z, \omega } \right) = \dfrac{{{\rm{i}}{\omega _{\rm{P}}}{\gamma _{\rm{e}}}{Q_0}}}{{2{n_{{\rm{eff}}}}c{\rho _0}}}{E_{\rm{P}}}\left( {z, \omega } \right)U\left( {z, \omega } \right) $ (2)

    View in Article

    $ U\left( {z, \omega } \right) = {\varepsilon _0}{\gamma _{\rm{e}}}{Q_1}\dfrac{{E_{\rm{P}}^{\rm{*}}\left( {z, \omega } \right){E_{{\rm{as}}}}\left( {\omega , t} \right)}}{{{\varOmega ^2} - \varOmega _{\rm{a}}^2 + {\rm{i}}\varOmega {\varGamma _{\rm{B}}}}} $ (3)

    View in Article

    $ \dfrac{{\partial {E_{{\rm{as}}}}\left( {z, {\rm{ \mathit{ ω} }}} \right)}}{{\partial z}} + {\rm{i}}\dfrac{{{n_{{\rm{eff}}}}}}{c}\left( {{\omega _{{\rm{as}}}} - \omega } \right){E_{{\rm{as}}}}\left( {z, \omega } \right) = {\rm{i}}\dfrac{{{\varepsilon _0}{\omega _{\rm{P}}}{\gamma _{\rm{e}}}^2{Q_1}{Q_0}}}{{2{n_{{\rm{eff}}}}c{\rho _0}}}\dfrac{{{P_{\rm{p}}}{E_{{\rm{as}}}}\left( {z, \omega } \right)}}{{{\varOmega ^2} - \varOmega _{\rm{a}}^2 + {\rm{i}}\varOmega {\varGamma _{\rm{B}}}}} $ (4)

    View in Article

    $ {\beta _{{\rm{as}}}}\left( {\rm{ \mathit{ ω} }} \right) = {n_{{\rm{eff}}}}\dfrac{\omega }{c} + \dfrac{{{\varepsilon _0}{\omega _{\rm{p}}}{\gamma _{\rm{e}}}^2{Q_1}{Q_0}}}{{2{n_{{\rm{eff}}}}c{\rho _0}{\varOmega _{\rm{a}}}}}\dfrac{{2{\varOmega ^2}\left( {\varOmega - {\varOmega _{\rm{s}}}} \right) - {\rm{i}}{\varOmega ^2}{\varGamma _{\rm{B}}}}}{{4{\varOmega ^2}{{\left( {\varOmega - {\varOmega _{\rm{s}}}} \right)}^2} + {\varOmega ^2}\varGamma _{\rm{B}}^2}}{P_{\rm{p}}} = \dfrac{\omega }{c}\widetilde n_{{{\rm{s}}}} $ (5)

    View in Article

    $ \widetilde n_{{{\rm{s}}}} = {n_{{\rm{eff}}}} + \dfrac{{{\varepsilon _0}{\gamma _{\rm{e}}}^2{Q_1}{Q_0}}}{{2{n_{{\rm{eff}}}}{\rho _0}{\varOmega _{\rm{a}}}}}\dfrac{{2{\varOmega ^2}\left( {\varOmega - {\varOmega _{\rm{a}}}} \right) - {\rm{i}}{\varOmega ^2}{\varGamma _{\rm{B}}}}}{{4{\varOmega ^2}{{\left( {\varOmega - {\varOmega _{\rm{a}}}} \right)}^2} + {\varOmega ^2}\varGamma _{\rm{B}}^2}}{P_{\rm{p}}} $ (6)

    View in Article

    $ n\left( \omega \right) = {\rm{real}}\left( {\widetilde n_{{{\rm{s}}}}} \right) = {n_{{\rm{eff}}}} + D\dfrac{{\delta \omega /{\varGamma _{\rm{B}}}}}{{1 + 4\delta {\omega ^2}/\varGamma _{\rm{B}}^2}} $ (7)

    View in Article

    $ {g_{\rm{s}}} = - \dfrac{\omega }{{{n_{{\rm{eff}}}}{{\rm{c}}^2}{\varepsilon _0}}}{\rm{Im}}\left( {\widetilde n_{{{\rm{s}}}}} \right) = \dfrac{{{g_0}\varGamma _{\rm{B}}^2{P_{\rm{p}}}}}{{4{{(\varOmega - {\varOmega _{\rm{a}}})}^2} + \varGamma _{\rm{B}}^2}} $ (8)

    View in Article

    $ {n_{\rm{g}}}\left( \omega \right) = n + \dfrac{{D\omega }}{{{\varGamma _{\rm{B}}}}}\dfrac{{1 - 4\delta {\omega ^2}/\varGamma _{\rm{B}}^2}}{{{{\left( {1 + 4\delta {\omega ^2}/\varGamma _{\rm{B}}^2} \right)}^2}}} $ (9)

    View in Article

    $ {\rm{\Delta }}T = \dfrac{{{L_{{\rm{eff}}}}}}{c}\left( {{n_{\rm{g}}} - n} \right) = \dfrac{{2{\rm{c}}{\varepsilon _0}{n_{{\rm{eff}}}}{\varGamma _{\rm{B}}}G}}{\omega }\dfrac{{1 - 4\delta {\omega ^2}/\varGamma _{\rm{B}}^2}}{{{{(1 + 4\delta {\omega ^2}/\varGamma _{\rm{B}}^2)}^2}}} $ (10)

    View in Article

    $ B = \dfrac{{{\tau _{{\rm{out}}}}}}{{{\tau _{{\rm{in}}}}}} = {( {1 - \dfrac{{16{\rm{ln}}2}}{{\tau _{{\rm{in}}}^2\varGamma _{\rm{B}}^2}}G} )^{1/2}} $ (11)

    View in Article

    $ \left( {1 - {\kappa ^2}} \right){J_0}\left( {{y_m}} \right) - {\kappa ^2}{J_2}\left( {{y_m}} \right) = 0 $ (12)

    View in Article

    $ \left\{ {ym=ΩmaVTκ=VTVL=(12ν)2(1ν)} \right. $ (13)

    View in Article

    $ \left\{ {Ur(r)=CRJ1(ymr/a)Uφ=0Uz=0} \right. $ (14)

    View in Article

    Dong-ming WU, Shang-lin HOU, Jing-li LEI, Dao-bin WANG, Xiao-xiao LI. Superluminal Propagation Induced by Forward Stimulated Brillouin Scattering in Small-core Photonic Crystal Fibers[J]. Acta Photonica Sinica, 2020, 49(7): 706002
    Download Citation