• Journal of Atmospheric and Environmental Optics
  • Vol. 16, Issue 1, 2 (2021)
Caiyu WANG1、2、3、*, Kee YUAN1、3、4, Dongfeng SHI1、3, Jian HUANG1、3, Wei YANG1、3, Linbin ZHA1、3, and Wenyue ZHU1、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1673-6141.2021.01.001 Cite this Article
    WANG Caiyu, YUAN Kee, SHI Dongfeng, HUANG Jian, YANG Wei, ZHA Linbin, ZHU Wenyue. Atmospheric Optical Turbulence Profile Measurement: A Review[J]. Journal of Atmospheric and Environmental Optics, 2021, 16(1): 2 Copy Citation Text show less
    References

    [1] Zhou Xiuji. Advanced Atmospheric Physics [M]. Beijing: China Meteorological Press, 1991: 138.

    [2] Andrews L C, Phillips R L. A new theory of optical scintillation for moderate-to-strong fluctuations [C]. Proceedings of SPIE-The International Society for Optical Engineering, 1999, 3609: 90-100.

    [3] Cui L Y, Xue B D, Zhou F G. Analytical expressions for the angle of arrival fluctuations for optical waves propagation through moderate-to-strong non-Kolmogorov refractive turbulence [J]. Journal of the Optical Society of America A, 2013, 30(11): 2188.

    [4] Zhou P, Ma Y X, Wang X L, et al. Average spreading of a Gaussian beam array in non-Kolmogorov turbulence [J]. Optics Letters, 2010, 35(7): 1043.

    [5] Huang Y P, Zeng A P, Gao Z H, et al. Beam wander of partially coherent array beams through non-Kolmogorov turbulence [J]. Optics Letters, 2015, 40(8): 1619.

    [6] Rao R Z. Science and technology of atmospheric effects on optical engineering: Progress in 3rd quinquennium of 21st century [J]. Science China Technological Sciences, 2017, 60(12): 1771-1783.

    [7] Cui J Q, Ma B K, Guo L X. Research on scintillation index of Laser beam propagation through atmospheric turbulence for double slant path [C]. 10th International Symposium on Antennas, Propagation & EM Theory (ISAPE), IEEE, 2012: 493-496.

    [8] Hudcova L, Barcik P. Experimental measurement of beam wander in the turbulent atmospheric transmission media [C]. Proceedings of 22nd International Conference, Radioelektronika 2012, IEEE, 2012: 191-194.

    [9] Churnside J H. Optical communications through a dispersive medium: a performance bound for photocounting [J]. Applied Optics, 1981, 20(4): 573-578.

    [10] Churnside J H, Mcintyre C M. Signal current probability distribution for optical heterodyne receivers in the turbulent atmosphere. 1: Theory [J]. Applied Optics, 1978, 17(14): 2141-2147.

    [11] Churnside J H, Mcintyre C M. Averaged threshold receiver for direct detection of optical communications through the lognormal atmospheric channel [J]. Applied Optics, 1977, 16(10): 2669-2676.

    [12] Prokes A, Brancik L. Degradation of free space optical communication performance caused by atmospheric turbulence [C]. 2nd International Conference on Advances in Computational Tools for Engineering Applications, 2012: 338-341.

    [13] Moore C I, Burris H R, Stell M F, et al. Atmospheric turbulence studies of a 16 km maritime path [C]. Proceedings of SPIE-The International Society for Optical Engineering, 2005, 5793: 78-88.

    [14] Mudge K A, Silva K K M B D, Clare B A, et al. Scintillation index of the free space optical channel: Phase screen modelling and experimental results [C]. International Conference on Space Optical Systems and Applications, IEEE, 2011: 403-409.

    [15] Arockia Bazil Raj A, Arputha Vijaya Selvi J. Comparison of different models for ground-level atmospheric attenuation prediction with new models according to local weather data for FSO applications [J]. Journal of Optical Communications, 2015, 36(2):181-186.

    [16] Kiasaleh K. Performance of coherent DPSK free-space optical communication systems in K-distributed turbulence [J]. IEEE Transactions on Communications, 2006, 54(4): 604-607.

    [17] Wu Xiaojun, Wang Hongxing, Li Bifeng, et al. Affect analysis of atmospheric turbulence on fading characteristics in free-space optical system over different environments [J]. Chinese Journal of Lasers, 2015, 42(5): 0513001.

    [18] Han Liqiang, You Yahui. Performance of multiple input multiple output free space optical communication under atmospheric turbulence and atmospheric attenuation [J]. Chinese Journal of Laser, 2016, 43(7): 0706004.

    [19] Osborn J. Profiling the Turbulent Atmosphere and Novel Correction Techniques for Imaging and Photometry in Astronomy [D]. Durham: Durham University, 2010.

    [20] Nilsson T, Haas R. Impact of atmospheric turbulence on geodetic very long baseline interferometry [J]. Journal of Geophysical Research: Solid Earth, 2010, 115(3): 1-11.

    [21] Aristidi E, Vernin J, Fossat E, et al. Monitoring the optical turbulence in the surface layer at Dome C, Antarctica, with sonic anemometers [J]. Monthly Notices of the Royal Astronomical Society, 2015, 454(4): 4304-4315.

    [22] Bufton J L, Minott P O, Fitzmaurice M W, et al. Measurements of turbulence profiles in the troposphere [J]. Journal of the Optical Society of America, 1972, 62(9): 1068-1070.

    [23] Majumdar A K, Eaton F D, Jensen M L, et al. Atmospheric turbulence measurements over desert site using ground-based instruments, kite/tethered-blimp platform, and aircraft relevant to optical communications and imaging systems: Preliminary results [C]. Free-Space Laser Communications VI, 2006, 6304: 63040X.

    [24] Balsley B B. Turbulence observations over a desert basin using a kite/tethered-blimp platform [J]. Optical Engineering, 2000, 39(9): 2517.

    [25] Marks R D, Vernin J, Azouit M, et al. Antarctic site testing-microthermal measurements of surface-layer seeing at the South Pole [J]. Astronomy and Astrophysics Supplement Series, 1996, 118(2): 385-390.

    [26] Wu S, Hu X D, Han Y J, et al. Measurement and analysis of atmospheric optical turbulence in Lhasa based on thermosonde [J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2020, 201: 05241.

    [27] Moulsley J T, Asimakopoulos D N, Cole R S, et al. Measureent of boundary layer structure parameter profiles by acoustic sounding and comparison with direct measurements [J]. Quarterly Journal of the Royal Meteorological Society, 1981, 107: 203-230.

    [28] Forbes F F, Barker E S, Peterman K R, et al. High altitude acoustic soundings [C]. Proceedings of SPIE-The International Society for Optical Engineering. 1986, 551: 60-73.

    [29] Qiang X W, Liu T H, Feng S L, et al. Remote sensing of atmospheric turbulence profiles by laser guide stars [C]. Optical Measurement Systems for Industrial Inspection X, 2017, 10329: 103292H.

    [30] Eaton F D. Recent developments of optical turbulence measurement techniques (Invited Paper) [C]. Atmospheric Propagation II, 2005, 5793: 68-77.

    [31] Azouit M, Vernin J. Optical turbulence profiling with balloons relevant to astronomy and atmospheric physics [J]. Publications of the Astronomical Society of the Pacific, 2005, 117(831): 536-543.

    [32] Manning R M, Vyhnalek B. A microwave radiometric method to obtain the average path profile of atmospheric temperature and humidity structure parameters and its application to optical propagation system assessment [C]. Free-Space Laser Communication and Atmospheric Propagation XXVII, 2015, 9354: 935406.

    [33] Vyhnalek B E. Path profiles of Cn2 derived from radiometer temperature measurements and geometrical ray tracing [C]. Free-Space Laser Communication and Atmospheric Propagation XXIX, 2017, 10096: 100961G.

    [34] Vernin J, Roddier F. Experimental determination of two-dimensional spatiotemporal power spectra of stellar light scintillation. Evidence for a multilayer structure of the air turbulence in the upper troposphere [J]. Journal Optical Society of America, 1973, 63(3): 270-273.

    [35] Avila R, Vernin J, Sánchez L J. Atmospheric turbulence and wind profiles monitoring with generalized scidar [J]. Astronomy and Astrophysics, 2001, 369(1): 364-372.

    [36] Tokovinin A, Vernin J, Ziad A, et al. Optical turbulence profiles at Mauna Kea measured by MASS and SCIDAR [J]. Publications of the Astronomical Society of the Pacific, 2005, 117(830): 395-400.

    [37] Tokovinin A. Turbulence profiles from the scintillation of stars, planets, and moon [J]. Revista Mexicana de Astronomia y Astrofisica: Serie de Conferencias, 2007, 31: 61-70.

    [38] Fuchs A, Tallon M, Vernin J. Focusing on a turbulent layer: principle of the “generalized SCIDAR” [J]. Publications of the Astronomical Society of the Pacific, 1998, 110(743): 86-91.

    [39] Shepherd H W, Osborn J, Wilson R W, et al. Stereo-SCIDAR: Optical turbulence profiling with high sensitivity using a modified SCIDAR instrument [J]. Monthly Notices of the Royal Astronomical Society, 2014, 437(4): 3568-3577.

    [40] Osborn J, Wilson R W, Sarazin M, et al. Optical turbulence profiling with Stereo-SCIDAR for VLT and ELT [J]. Monthly Notices of the Royal Astronomical Society, 2018, 478(1): 825-834.

    [41] Wilson R W. Slodar: Measuring optical turbulence altitude with a Shack-Hartmann wavefront sensor [J]. Monthly Notices of the Royal Astronomical Society, 2002, 337(1): 103-108.

    [42] Butterley T, Wilson R W, Sarazin M. Determination of the profile of atmospheric optical turbulence strength from SLODAR data [J]. Monthly Notices of the Royal Astronomical Society, 2006, 369(2): 835-845.

    [43] Osborn J, Wilson R, Butterley T, et al. Profiling the surface layer of optical turbulence with SLODAR [J]. Monthly Notices of the Royal Astronomical Society, 2010, 406(2): 1405-1408.

    [44] Lombardi G, Sarazin M, Char F, et al. Surface layer turbulence profiling with the SL-SLODAR and LuSci at ESO Paranal observatory [C]. Third AO4ELT Conference-Adaptive Optics for Extremely Large Telescopes, 2013, 2: 2-8.

    [45] Kornilov V, Tokovinin A A, Vozyakova O, et al. MASS: A monitor of the vertical turbulence distribution [C]. Proceedings of SPIE-The International Society for Optical Engineering, 2003, 4839 (2): 837-845.

    [46] Els S G, Schck M, Seguel J, et al. Study on the precision of the MASS turbulence profiler employed in the site testing campaign for the thirty meter telescope [J]. Applied Optics, 2008, 47(14): 2610-2618.

    [47] Hickson P, Lanzetta K. Measuring atmospheric turbulence with a lunar scintillometer array [J]. Publications of the Astronomical Society of the Pacific, 2004, 116(826): 1143-1152.

    [48] Tokovinin A, Bustos E, Berdja A. Near-ground turbulence profiles from lunar scintillometer [J]. Monthly Notices of the Royal Astronomical Society, 2010, 404(3): 1186-1196.

    [49] Thomas-osip J E, Prieto G, Berdja A, et al. Characterizing optical turbulence at the GMT site with MooSci and MASS-DIMM [J]. Publications of the Astronomical Society of the Pacific, 2012, 124(911): 84-93.

    [50] Eaton F D, Peterson W A, Hines J R, et al. Comparison of two techniques for determining atmospheric seeing [C]. Proceedings of SPIE-The International Society for Optical Engineering, 1988, 926: 319-334.

    [51] Belen′kii M S, Roberts D W, Stewart J M, et al. Experimental validation of the differential image motion lidar concept [J]. Optics Letters, 2000, 25(8): 518.

    [52] Gatland I, Stewart J M, Gimmestad G G. Inversion techniques for the differential image motion lidar [C]. Proceedings of SPIE-The International Society for Optical Engineering, 2009, 7324: 73240C.

    [53] Tokovinin A. From differential image motion to seeing [J]. Publications of the Astronomical Society of the Pacific, 2002, 114(800): 1156-1166.

    [54] Gimmestad G G, Roberts D W, Stewart J M, et al. Testing of LIDAR system for turbulence profiles [C]. Proceedings of SPIE-The International Society for Optical Engineering, 2008, 6951: 695109.

    [55] Zhou Yingjie, Zhou Anran, Sun Dongsong, et al. Development of differential image motion LIDAR for profiling optical turbulence [J]. Infrared and Laser Engineering, 2016, 45(11):1-5.

    [56] Guo Jie, Sun Dongsong, Qiang Xiwen, et al. Error analysis of differential image motion lidar [J]. Acta Optica Sinica, 2014, 34(8): 1130001.

    [57] Jing X, Hou Z, Wu Y, et al. Development of a differential column image motion light detection and ranging for measuring turbulence profiles [J]. Optics Letters, 2013, 38(17): 3445.

    [58] Cheng Zhi. Detection Methods of Atmospheric Turbulence Profile Based on Differential Light Column Lidar [D]. Heifei: University of Science and Technology of China, 2017.

    [59] Belen′kii M S, Bruns D, Hughes K A, et al. Cross-Path LIDAR for turbulence profile determination [C]. Advanced Maui Optical Space Surveillance Technologies Conference, 2007: 1-10.

    [60] Beleri′kii M S. Effect of residual turbulent scintillation and a remote-sensing technique for simultaneous determination of turbulence and scattering parameters of the atmosphere [J]. Journal of the Optical Society of America A, 1994, 11(3):1150.

    [61] Belen′kii M S, Gimmestad G G. Design considerations for residual turbulent scintillation (RTS) lidar [C]. Proceedings of SPIE-The International Society for Optical Engineering, 1994, 2222: 628-632.

    [62] Cui Chaolong, Huang Honghua, Mei Haiping, et al. Residual turbulent scintillation lidar for detecting atmospheric turbulence [J]. High Power Laser and Particle Beam, 2013, 25(5): 1091-1096.

    [63] Zhao Qi. Atmospheric Turbulence Measurment with Scintillation Lidar [D]. Heifei: University of Science and Technology of China, 2018.

    [64] Cui Chaolong, Huang Honghua, Mei Haiping, et al. Measurement of turbulence information using Mie scattering lidar [J]. Journal of Atmospheric and Environmental Optics, 2011, 6(2): 89-94.

    WANG Caiyu, YUAN Kee, SHI Dongfeng, HUANG Jian, YANG Wei, ZHA Linbin, ZHU Wenyue. Atmospheric Optical Turbulence Profile Measurement: A Review[J]. Journal of Atmospheric and Environmental Optics, 2021, 16(1): 2
    Download Citation