• Photonics Research
  • Vol. 8, Issue 6, 852 (2020)
Yiwei Xie1, Leimeng Zhuang4, Pengcheng Jiao2、3、*, and Daoxin Dai1
Author Affiliations
  • 1Centre for Optical and Electromagnetic Research, State Key Laboratory for Modern Optical Instrumentation, Zhejiang Provincial Key Laboratory for Sensing Technologies, Zhejiang University, Hangzhou 310058, China
  • 2Institute of Port, Coastal and Offshore Engineering, Ocean College, Zhejiang University, Zhoushan 316021, China
  • 3Engineering Research Center of Oceanic Sensing Technology and Equipment, Ministry of Education, Zhejiang University, Hangzhou 310000, China
  • 4e-mail: leimeng.zhuang@ieee.org
  • show less
    DOI: 10.1364/PRJ.387480 Cite this Article Set citation alerts
    Yiwei Xie, Leimeng Zhuang, Pengcheng Jiao, Daoxin Dai. Sub-nanosecond-speed frequency-reconfigurable photonic radio frequency switch using a silicon modulator[J]. Photonics Research, 2020, 8(6): 852 Copy Citation Text show less
    References

    [1] P. Hindle. The state of RF/microwave switches. Microwave J., 53, 20-36(2010).

    [2] P. Bacon, D. Fischer, R. Lourens. Overview of RF switch technology and applications. Microwave J., 57, 76-88(2014).

    [3] H. Emami, N. Sarkhosh. Reconfigurable microwave photonic in-phase and quadrature detector for frequency agile radar. J. Opt. Soc. Am. A, 31, 1320-1325(2014).

    [4] S. Pranonsatit, A. S. Holmes, I. D. Robertson, S. Lucyszyn. Single-pole eight-throw RF MEMS rotary switch. J. Microelectromech. Syst., 15, 1735-1744(2006).

    [5] G. M. Rebeiz, J. B. Muldavin. RF MEMS switches and switch circuits. IEEE Microw., 2, 59-71(2001).

    [6] . Understanding RF/Microwave Solid State Switches and Their Applications(2010).

    [7] J. Yao. Microwave photonics. J. Lightwave Technol., 27, 314-335(2009).

    [8] J. Capmany, D. Novak. Microwave photonics combines two worlds. Nat. Photonics, 1, 319-330(2007).

    [9] L. Zhuang, M. Hoekman, W. Beeker, A. Leinse, R. Heideman, P. Dijk, C. Roeloffzen. Novel low-loss waveguide delay lines using Vernier ring resonators for on-chip multi-λ microwave photonic signal processors. Laser Photon. Rev., 7, 994-1002(2013).

    [10] J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, S. Sales. Microwave photonic signal processing. J. Lightwave Technol., 31, 571-586(2013).

    [11] J. Ge, M. P. Fok. Ultra high-speed radio frequency switch based on photonics. Sci. Rep., 5, 17263(2015).

    [12] K. Tsuji, T. Uehara. Photonic generation of a phase-switchable ASK signal using orthogonal polarization modes of a single optical phase modulator. Opto-Electronics and Communications Conference, s1257(2017).

    [13] W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, R. Baets. Silicon-on-insulator spectral filters fabricated with CMOS technology. IEEE J. Sel. Top. Quantum Electron., 16, 33-44(2010).

    [14] Y. Xie, Z. Geng, L. Zhuang, M. Burla, C. Taddei, M. Hoekman, A. Leinse, C. G. Roeloffzen, K. J. Boller, A. J. Lowery. Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity. Nanophotonics, 7, 421-454(2017).

    [15] D. J. Moss, R. Morandotti, A. L. Gaeta, M. Lipson. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photonics, 7, 597-607(2013).

    [16] C. Doerr. Silicon photonic integration in telecommunications. Front. Phys., 3, 37(2015).

    [17] Y. Xie, L. Zhuang, A. J. Lowery. Silicon microring modulator-based RF mixer for millimeter-wave phase-coded signal generation. Opt. Lett., 42, 2742-2745(2017).

    [18] A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, M. Paniccia. High-speed optical modulation based on carrier depletion in a silicon waveguide. Opt. Express, 15, 660-668(2007).

    [19] A. E. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. Tern, T. Y. Liow. Review of silicon photonics foundry efforts. J. Sel. Top. Quantum Electron., 20, 405-416(2014).

    [20] M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, J. E. Bowers. Hybrid silicon photonic integrated circuit technology. J. Sel. Top. Quantum Electron., 19, 6100117(2013).

    [21] L. Zhuang, W. Beeker, A. Leinse, R. Heideman, P. van Dijk, C. Roeloffzen. Novel wideband microwave polarization network using a fully-reconfigurable photonic waveguide interleaver with a two-ring resonator-assisted asymmetric Mach-Zehnder structure. Opt. Express, 21, 3114-3124(2013).

    [22] C. H. Cox. Analog Optical Links(2004).

    [23] C. K. Madsen, J. H. Zhao. Optical Filter Design and Analysis: A Signal Processing Approach(1999).

    [24] Y. Xie, L. Zhuang, R. Broeke, Q. Wang, B. Song, Z. Geng, A. J. Lowery. Compact 4 × 5  Gb/s silicon-on-insulator OFDM transmitter. Optical Fiber Communication (OFC) Conference, W2A.9(2017).

    [25] H. Xu, X. Xiao, X. Li, Y. Hu, Z. Li, T. Chu, Y. Yu, J. Yu. High speed silicon Mach-Zehnder modulator based on interleaved PN junctions. Opt. Express, 20, 15093-15099(2012).

    [26] X. Liu, W. Pan, X. Zou, D. Zheng, L. Yan, B. Luo. Frequency-doubling optoelectronic oscillator using DSB-SC modulation and carrier recovery based on stimulated Brillouin scattering. IEEE Photon. J., 5, 6600606(2013).

    [27] C. Zhang, S. Zhang, J. D. Peters, J. E. Bowers. 8 × 8 × 40 Gbps fully integrated silicon photonic network on chip. Optica, 3, 785-786(2016).

    Yiwei Xie, Leimeng Zhuang, Pengcheng Jiao, Daoxin Dai. Sub-nanosecond-speed frequency-reconfigurable photonic radio frequency switch using a silicon modulator[J]. Photonics Research, 2020, 8(6): 852
    Download Citation