• High Power Laser and Particle Beams
  • Vol. 32, Issue 11, 112009 (2020)
Lailin Ji, Xiaohui Zhao, Dong Liu, Lan Xia, Yanqi Gao, Yong Cui, Daxing Rao, Wei Feng, Jiani Liu, Xiaoli Li, Jia Liu, Haitao Shi, Tao Wang, Pengyuan Du, Tianxiong Zhang, Zhan Sui, Weixin Ma, and Jian Zhu
Author Affiliations
  • Shanghai institute of laser plasma, CAEP, Shanghai 201800, China
  • show less
    DOI: 10.11884/HPLPB202032.200103 Cite this Article
    Lailin Ji, Xiaohui Zhao, Dong Liu, Lan Xia, Yanqi Gao, Yong Cui, Daxing Rao, Wei Feng, Jiani Liu, Xiaoli Li, Jia Liu, Haitao Shi, Tao Wang, Pengyuan Du, Tianxiong Zhang, Zhan Sui, Weixin Ma, Jian Zhu. Research progress of low-temporal-coherence light frequency conversion technology for high power Nd:glass laser system[J]. High Power Laser and Particle Beams, 2020, 32(11): 112009 Copy Citation Text show less
    References

    [1] Fedotov S I, Feoktistov L P, Osipov M V. Lasers for ICF with a controllable function of mutual coherence of radiation[J]. Journal of Russian Laser Research, 25, 79-92(2004).

    [2] Lindl J D, Amendt P, Berger R L. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 11, 339-491(2004).

    [3] Smalyuk V A, Shvarts D, Betti R. Role of hot-electron preheating in the compression of direct-drive imploding targets with cryogenic D2 ablators[J]. Physical Review Letters, 100, 1459-1469(2008).

    [4] Karasik M, Weaver J L, Aglitskiy Y. Suppression of laser nonuniformity imprinting using a thin high-z coating[J]. Physical Review Letters, 114, 085001(2015).

    [5] Eimerl D, Campbell E M, Krupke W F. StarDriver: a flexible laser driver for inertial confinement fusion and high energy density physics[J]. Journal of Fusion Energy, 33, 476-488(2014).

    [6] Garanin S G, Derkach V N, Shnyagin R A. Formation of the uniform irradiation of a target in high-power laser facilities[J]. Quantum Electronics, 34, 427-446(2004).

    [8] Marozas J A. Fourier transform-based continuous phase-plate design technique: a high-pass phase-plate design as an application for OMEGA and the National Ignition Facility[J]. Journal of The Optical Society of America A-optics Image Science and Vision, 24, 74-83(2007).

    [9] Marozas J A, Kelly J H. Angular spectrum representation of pulsed laser beams with two-dimensional smoothing by spectral dispersion[J]. LLE Rev, 78, 62-81(1999).

    [10] Regan S, Marozas J A, Kelly J. Experimental investigation of smoothing by spectral dispersion[J]. Journal of The Optical Society of America B-optical Physics, 17, 1483-1489(2000).

    [11] Regan S, Marozas J A, Craxton R S. Performance of 1-THz-bandwidth, two-dimensional smoothing by spectral dispersion and polarization smoothing of high-power, solid-state laser beams[J]. Journal of The Optical Society of America B-optical Physics, 22, 998-1002(2005).

    [12] Moody J D, Michel P, Divol L. Multistep redirection by cross-beam power transfer of ultrahigh-power lasers in a plasma[J]. Nature Physics, 8, 344-349(2012).

    [13] Betti R, Hurricane O A. Inertial-confinement fusion with lasers[J]. Nature Physics, 12, 435-448(2016).

    [14] Glenzer S H, Froula D H, Divol L. Experiments and multiscale simulations of laser propagation through ignition-scale plasmas[J]. Nature Physics, 3, 716-719(2007).

    [15] Labaune, Christine. Laser-driven fusion: Incoherent light on the road to ignition[J]. Nature Physics, 3, 680-682(2007).

    [16] Santos J E, Silva L O, Bingham R. White-light parametric instabilities in plasmas[J]. Physical Review Letters, 98, 235001(2007).

    [17] Follett R K, Shaw J G, Myatt J F. Thresholds of absolute instabilities driven by a broadband laser[J]. Physics of Plasmas, 26, 062111(2019).

    [18] Palastro J P, Shaw J G, Follett R K. Resonance absorption of a broadband laser pulse[J]. Physics of Plasmas, 25, 123104(2018).

    [19] Eimerl D, Skupsky S, Campbell E M. StarDriver: Recent results on beam smoothing and LPI mitigation[J]. Journal of Physics Conference, 717, 012015(2016).

    [20] Dorrer C. Statistical analysis of incoherent pulse shaping[J]. Optics Express, 17, 3341-3352(2009).

    [21] Spaeth M L, Manes K R, Bowers M. National ignition facility laser system performance[J]. Fusion Science and Technology, 69, 366-394(2016).

    [22] Cui Y, Gao Y, Rao D. High-energy low-temporal-coherence instantaneous broadband pulse system[J]. Optics Letters, 44, 2859-2862(2019).

    [23] Dorrer C, Hill E M, Zuegel J D. High-energy parametric amplification of spectrally incoherent broadband pulses[J]. Optics Express, 28, 451-471(2020).

    [24] Franken P A, Hill A E, Peters C W. Generation of optical harmonics[J]. Physical Review Letters, 7, 118-119(1961).

    [25] Bloembergen N, Pershan P S. Light waves at the boundary of nonlinear media[J]. Physical Review, 128, 606-622(1962).

    [26] Martinez O E. Achromatic phase matching for second harmonic generation of femtosecond pulses[J]. IEEE Journal Quantum Electronics, 25, 2464-2468(1989).

    [27] Richman B A, Bisson S E, Trebino V. Efficient broadband second-harmonic generation by dispersive achromatic nonlinear conversionusing only prisms[J]. Opt Lett, 23, 497(1998).

    [28] Ashihara S, Shimura T, Kuroda K. Group-velocity matched second-harmonic generation in tilted quasi-phase-matched gratings[J]. Journal of the Optical Society of America B, 20, 853-856(2003).

    [29] Chen B Q, Zhang C, Hu C Y. High-efficiency broadband high-harmonic generation from a single quasi-phase-matching nonlinear crystal[J]. Physical Review Letters, 115, 083902(2015).

    [30] Zhang T R, Choo H R, Downer M C. Phase and group velocity matching for second harmonic generation of femtosecond pulses[J]. Applied Optics, 29, 3927-3933(1990).

    [31] Brown M. Increased spectral bandwidths in nonlinear conversion processes by use of multicrystal designs[J]. Optics Letters, 23, 1591-1593(1998).

    [32] Wang G Y, Garmire E M. High-efficiency generation of ultrashort second-harmonic pulses based on the erenkov geometry[J]. Optics Letters, 19, 254-256(1994).

    [33] Pronko M S, Lehmberg R H, Obenschain S P. Efficient second harmonic conversion of broad-band high-peak-power Nd:glass laser radiation using large-aperture KDP crystals in quadrature[J]. IEEE Journal of Quantum Electronics, 26, 337-347(1990).

    [34] Ji Lailin, Zhu Baoqiang, Liu Chong. Optimization of quadrature frequency conversion with type-II KDP for second harmonic generation of the nanosecond chirp pulse at 1053 nm[J]. Chinese Optics Letters, 12, 70-74(2014).

    [35] Eimerl D, Auerbach J M, Barker C E. Multicrystal designs for efficient third-harmonic generation[J]. Optics Letters, 22, 1208-1210(1997).

    [36] Babushkin A, Craxton R S, Oskoui S. Demonstration of the dual-tripler scheme for increased-bandwidth third-harmonic generation[J]. Optics Letters, 23, 927-929(1998).

    [37] Short R W, Skupsky S. Frequency conversion of broad-bandwidth laser light[J]. IEEE Journal of Quantum Electronics, 26, 580-588(1990).

    [38] Skeldon M D, Craxton R S, Kessler T J. Efficient harmonic generation with a broad-band laser[J]. IEEE Journal of Quantum Electronics, 28, 1389-1399(1992).

    [39] Nakatsuka M, Miyanaga N, Kanabe T, et al. Partially coherent light sources f ICF experiment[C] Proc of SPIE. 1993, 1870: 151162.

    [40] Videau L, Boscheron A C L, Garnier J C, et al. Recent results of optical smoothing on the Phebus laser[C] Proc of SPIE.1997, 3047: 757762.

    [41] Boscheron A C, Sauteret C, Migus A. Efficient broadband sum frequency based on controlled phase-modulated input fields: theory for 351-nm ultrabroadband or ultrashort-pulse generation[J]. Journal of The Optical Society of America B-optical Physics, 13, 818-826(1996).

    [42] Raoult F, Boscheron A C, Husson D. Ultrashort, intense ultraviolet pulse generation by efficient frequency tripling and adapted phase matching[J]. Optics Letters, 24, 354-356(1999).

    [45] Rozenberg E, Arie A. Broadband and robust adiabatic second-harmonic generation by a temperature gradient in birefringently phase-matched lithium triborate crystal[J]. Optics Letters, 44, 3358-3361(2019).

    [46] Zhu H Y, Wang T, Zheng W G. Efficient second harmonic generation of femtosecond laser at 1 μm[J]. Optics Express, 12, 2150-2155(2004).

    [47] Zheng Wanguo, Qian LieJia, Yuan Peng. Second harmonic generation of femtosecond laser at one micron in a partially deuterated KDP[J]. Chinese Physics Letters, 23, 139-142(2006).

    [48] Dmitriev V G, Osipov M V, Puzyrev V N. Nonlinear optical conversion of Nd:glass laser multimode radiation into the second harmonic in KDP crystal[J]. Journal of Physics B, 45, 165401(2012).

    [49] Vasin B L, Korobkin Y V, Osipov M V. Second-harmonic conversion of partially coherent radiation of neodymium glass laser[J]. Bulletin of the Lebedev Physics Institute, 40, 205-209(2013).

    [50] Ji L, Zhao X, Liu D. High-efficiency second-harmonic generation of low-temporal-coherent light pulse[J]. Optics Letters, 44, 4359-4362(2019).

    Lailin Ji, Xiaohui Zhao, Dong Liu, Lan Xia, Yanqi Gao, Yong Cui, Daxing Rao, Wei Feng, Jiani Liu, Xiaoli Li, Jia Liu, Haitao Shi, Tao Wang, Pengyuan Du, Tianxiong Zhang, Zhan Sui, Weixin Ma, Jian Zhu. Research progress of low-temporal-coherence light frequency conversion technology for high power Nd:glass laser system[J]. High Power Laser and Particle Beams, 2020, 32(11): 112009
    Download Citation