[1] WANG R, SHI M, XU F, et al. Graphdiyne-modified TiO2 nanofibers with osteoinductive and enhanced photocatalytic antibacterial activities to prevent implant infection[J]. Nat Commun, 2020, 11(1): 4465.
[2] WANG J, WANG S. Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: A review[J]. J Environ Manage, 2016, 182: 620-640.
[3] REDDY P A K, REDDY P V L, KWON E, et al. Recent advances in photocatalytic treatment of pollutants in aqueous media[J]. Environ Int, 2016, 91: 94-103.
[4] BRILLAS E, MART?NEZ-HUITLE C A. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review[J]. Appl Catal B, 2015, 166-167: 603-643.
[5] KHIN M M, NAIR A S, BABU V J, et al. A review on nanomaterials for environmental remediation[J]. Energ Environ Sci, 2012, 5(8): 8075-8819.
[6] ANTONOPOULOU M, EVGENIDOU E, LAMBROPOULOU D, et al. A review on advanced oxidation processes for the removal of taste and odor compounds from aqueous media[J]. Water Res, 2014, 53: 215-234.
[7] HE R, XU D, CHENG B, et al. Review on nanoscale Bi-based photocatalysts[J]. Nanoscale Horiz, 2018, 3(5): 464-504.
[8] YANG Y, TAN H, CHENG B, et al. Near-infrared-responsive photocatalysts[J]. Small Methods, 2021, 5(4): 2001042.
[9] HE R, CHEN R, LUO J, et al. Fabrication of graphene quantum dots modified BiOI/PAN flexible fiber with enhanced photocatalytic activity[J]. Acta Phys Chim Sin, 2021, 37: 2011022.
[10] LIU X, GU S, ZHAO Y, et al. BiVO4, Bi2WO6 and Bi2MoO6 photocatalysis: A brief review[J]. J Mater Sci Technol, 2020, 56(SI): 45-68.
[11] KE J, LIU J, SUN H, et al. Facile assembly of Bi2O3/Bi2S3/MoS2 n-p heterojunction with layered n-Bi2O3 and p-MoS2 for enhanced photocatalytic water oxidation and pollutant degradation[J]. Appl Catal B, 2017, 200: 47-55.
[12] ZAHID A H, HAN Q. A review on the preparation, microstructure, and photocatalytic performance of Bi2O3 in polymorphs[J]. Nanoscale, 2021, 13(42): 17687-17724.
[13] REVERBERI A P, VARBANOV P S, VOCCIANTE M, et al. Bismuth oxide-related photocatalysts in green nanotechnology: A critical analysis[J]. Front Chem Sci Eng, 2018, 12(4): 878-892.
[14] LEI B, CUI W, SHENG J, et al. Synergistic effects of crystal structure and oxygen vacancy on Bi2O3 polymorphs: Intermediates activation, photocatalytic reaction efficiency, and conversion pathway[J]. Sci Bull, 2020, 65(6): 467-476.
[15] ZHANG L, ZHANG J, YU H, et al. Emerging S-scheme Photocatalyst[J]. Adv Mater, 2022, 34(11): 2107668.
[16] XU F, MENG K, CHENG B, et al. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction[J]. Nat Commun, 2020, 11(1): 4613.
[17] HE J, KUMAR A, KHAN M, et al. Critical review of photocatalytic disinfection of bacteria: From noble metals and carbon nanomaterials-TiO2 composites to challenges of water characteristics and strategic solutions[J]. Sci Total Environ, 2021, 758: 143953.
[19] QI K, ZADA A, YANG Y, et al. Design of 2D-2D NiO/g-C3N4 heterojunction photocatalysts for degradation of an emerging pollutant[J]. Res Chem Intermediat, 2020, 46(12): 5281-5295.
[20] CHEN X, DAI J, SHI G, et al. Visible light photocatalytic degradation of dyes by β-Bi2O3/graphene nanocomposites[J]. J Alloy Compd, 2015, 649: 872-877.
[21] HAO Q, LIU Y, CHEN T, et al. Bi2O3@Carbon Nanocomposites for Solar-Driven Photocatalytic Degradation of Chlorophenols[J]. ACS Appl Nano Mater, 2019, 2(4): 2308-2316.
[22] KARIM A V, SELVARAJ A. Graphene composites in photocatalytic oxidation of aqueous organic contaminants - a state of art[J]. Process Saf Environ, 2021, 146: 136-160.
[23] IKRAM M, RASHID M, HAIDER A, et al. A review of photocatalytic characterization, and environmental cleaning, of metal oxide nanostructured materials[J]. Sustain Mater Technol, 2021, 30: e343.
[25] HE R, LOU Z, GUI J, et al. Room-temperature synthesis of BiOI/Graphene oxide foam composite for phenol removal under visible light[J]. Appl Surface Sci, 2020, 504: 144370.
[26] ZHANG Q, XIA Y, CAO S. "Environmental phosphorylation" boosting photocatalytic CO2 reduction over polymeric carbon nitride grown on carbon paper at air - liquid - solid joint interfaces[J]. Chin J Catal, 2021, 42: 1667-1676.
[27] PENG G, QIN J, VOLOKH M, et al. Freestanding hierarchical carbon nitride/carbon-paper electrode as a photoelectrocatalyst for water splitting and dye degradation[J]. Acs Appl Mater Inter, 2019, 11(32): 29139-29146.
[28] ZHANG M, GONG Y, MA N, et al. Promoted photoelectrocatalytic degradation of BPA with peroxymonosulfate on a MnFe2O4 modified carbon paper cathode[J]. Chem Eng J, 2020, 399: 125088.
[29] ZHANG G, CHEN D, LI N, et al. SnS2/SnO2 heterostructured nanosheet arrays grown on carbon cloth for efficient photocatalytic reduction of Cr(VI)[J]. J Colloid Interface Sci, 2018, 514: 306-315.
[30] DIAO W, HE J, WANG Q, et al. K, Na and Cl co-doped TiO2 nanorod arrays on carbon cloth for efficient photocatalytic degradation of formaldehyde under UV/visible LED irradiation[J]. Catal Sci Technol, 2021, 11(1): 230-238.
[31] SHEN R, JIANG C, XIANG Q, et al. Surface and interface engineering of hierarchical photocatalysts[J]. Appl Surface Sci, 2019, 471: 43-87.
[32] SHARMA S, BASU S. Highly reusable visible light active hierarchical porous WO3/SiO2 monolith in centimeter length scale for enhanced photocatalytic degradation of toxic pollutants[J]. Sep Purif Technol, 2020, 231: 115916.
[33] LIANG Z, BAI X, HAO P, et al. Full solar spectrum photocatalytic oxygen evolution by carbon-coated TiO2 hierarchical nanotubes[J]. Appl Catal B: Environmental, 2019, 243: 711-720.
[35] DING S, DONG T, PEPPEL T, et al. Construction of amorphous SiO2 modified β-Bi2O3 porous hierarchical microspheres for photocatalytic antibiotics degradation[J]. J Colloid Interface Sci, 2022, 607: 1717-1729.
[36] WU G, ZHAO Y, ZHAO J. Facile synthesis of novel round-cake-like α-Bi2O3 hierarchical architectures for extended visible-light photocatalytic performance[J]. Mater Res Bull, 2022, 146: 111594.
[37] YI R, WANG R, DUAN J, et al. Rational design of hierarchically porous NiCo2O4 and Bi2O3 nanostructure: Anchored on 3D nitrogen doped carbonized melamine foam for flexible asymmetric supercapacitor[J]. Electrochim Acta, 2020, 338: 135845.
[38] REDDY I N, REDDY C V, SREEDHAR A, et al. Systematic studies of Bi2O3 hierarchical nanostructural and plasmonic effect on photoelectrochemical activity under visible light irradiation[J]. Ceram Int, 2019, 45(14): 16784-16791.
[39] SUDRAJAT H, SUJARIDWORAKUN P. Low-temperature synthesis of δ-Bi2O3 hierarchical nanostructures composed of ultrathin nanosheets for efficient photocatalysis[J]. Mater Design, 2017, 130: 501-511.
[40] RONGAN H, HAIJUAN L, HUIMIN L, et al. S-scheme photocatalyst Bi2O3/TiO2 nanofiber with improved photocatalytic performance[J]. J Mater Sci Technol, 2020, 52: 145-151.
[41] HE R, OU S, LIU Y, et al. In situ fabrication of Bi2Se3/g-C3N4 S-scheme photocatalyst with improved photocatalytic activity[J]. Chin J Catal, 2022, 43: 370-378.
[42] JIANG H, LI P, LIU G, et al. Synthesis and photocatalytic properties of metastable β-Bi2O3 stabilized by surface-coordination effects[J]. J Mater Chem A, 2015, 3: 5119-5125.
[43] KANAGARAJ T, MURPHIN KUMAR P S, THOMAS R, et al. Novel pure α-, β-, and mixed-phase α/β-Bi2O3 photocatalysts for enhanced organic dye degradation under both visible light and solar irradiation[J]. Environ Res, 2022, 205: 112439.