• Chinese Optics Letters
  • Vol. 21, Issue 11, 110007 (2023)
Hua Tan1,2, Lei Du2, Fenghe Yang2,*, Wei Chu2,**, and Yiqiang Zhan1
Author Affiliations
  • 1Centre for Micro Nano Systems, School of Information Science and Technology (SIST), Fudan University, Shanghai 200433, China
  • 2Zhangjiang Laboratory, Shanghai 201210, China
  • show less
    DOI: 10.3788/COL202321.110007 Cite this Article Set citation alerts
    Hua Tan, Lei Du, Fenghe Yang, Wei Chu, Yiqiang Zhan, "Two-dimensional materials in photonic integrated circuits: recent developments and future perspectives [Invited]," Chin. Opt. Lett. 21, 110007 (2023) Copy Citation Text show less
    References

    [1] J. D. Meindl. Beyond Moore’s law: the interconnect era. Comput. Sci. Eng., 5, 20(2003).

    [2] C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, V. M. Stojanović. Single-chip microprocessor that communicates directly using light. Nature, 528, 534(2015).

    [3] Y. Li, Y. Zhang, L. Zhang, A. W. Poon. Silicon and hybrid silicon photonic devices for intra-datacenter applications: state of the art and perspectives [Invited]. Photonics Res., 3, B10(2015).

    [4] Y. Su, Y. He, X. Guo, W. Xie, X. Ji, H. Wang, X. Cai, L. Tong, S. Yu. Scalability of large-scale photonic integrated circuits. ACS Photonics, 10, 2020(2023).

    [5] W. N. Ye, Y. Xiong. Review of silicon photonics: history and recent advances. J. Mod. Opt., 60, 1299(2013).

    [6] S. Mokkapati, C. Jagadish. III-V compound SC for optoelectronic devices. Mater. Today, 12, 22(2009).

    [7] P. Kharel, C. Reimer, K. Luke, L. He, M. Zhang. Breaking voltage–bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes. Optica, 8, 357(2021).

    [8] G. Chen, Y. Yu, Y. Shi, N. Li, W. Luo, L. Cao, A. J. Danner, A. Q. Liu, X. Zhang. High-speed photodetectors on silicon photonics platform for optical interconnect. Laser Photon. Rev., 16, 2200117(2022).

    [9] S. Lischke, A. Peczek, J. S. Morgan, K. Sun, D. Steckler, Y. Yamamoto, F. Korndörfer, C. Mai, S. Marschmeyer, M. Fraschke, A. Krüger, A. Beling, L. Zimmermann. Ultra-fast germanium photodiode with 3-dB bandwidth of 265 GHz. Nat. Photonics, 15, 925(2021).

    [10] C. Xiang, W. Jin, D. Huang, M. A. Tran, J. Guo, Y. Wan, W. Xie, G. Kurczveil, A. M. Netherton, D. Liang, H. Rong, J. E. Bowers. High-performance silicon photonics using heterogeneous integration. IEEE J. Sel. Top. Quantum Electron., 28, 8200515(2022).

    [11] P. Mrowiński, P. Holewa, A. Sakanas, G. Sęk, E. Semenova, M. Syperek. Optimization of heterogeneously integrated InP-Si on-chip photonic components. Opt. Express, 31, 1541(2023).

    [12] Z. Zhou, X. Ou, Y. Fang, E. Alkhazraji, R. Xu, Y. Wan, J. E. Bowers. Prospects and applications of on-chip lasers. eLight, 3, 1(2023).

    [13] A. Boes, L. Chang, C. Langrock, M. Yu, M. Zhang, Q. Lin, M. Loncar, M. Fejer, J. Bowers, A. Mitchell. Lithium niobate photonics: unlocking the electromagnetic spectrum. Science, 379, eabj4396(2023).

    [14] C. Op de Beeck, F. M. Mayor, S. Cuyvers, S. Poelman, J. F. Herrmann, O. Atalar, T. P. McKenna, B. Haq, W. Jiang, J. D. Witmer, G. Roelkens, A. H. Safavi-Naeini, R. Van Laer, B. Kuyken. III/V-on-lithium niobate amplifiers and lasers. Optica, 8, 1288(2021).

    [15] Z. Ruan, K. Chen, Z. Wang, X. Fan, R. Gan, L. Qi, Y. Xie, C. Guo, Z. Yang, N. Cui, L. Liu. High-performance electro-optic modulator on silicon nitride platform with heterogeneous integration of lithium niobate. Laser Photon. Rev., 17, 2200327(2023).

    [16] C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, M. Loncar. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101(2018).

    [17] S. Abel, T. Stöferle, C. Marchiori, D. Caimi, L. Czornomaz, M. Stuckelberger, M. Sousa, B. J. Offrein, J. Fompeyrine. A hybrid barium titanate–silicon photonics platform for ultraefficient electro-optic tuning. J. Lightwave Technol., 34, 1688(2016).

    [18] A. B. Posadas, V. E. Stenger, J. DeFouw, G. Z. Mashanovich, D. Wasserman, A. A. Demkov. Electro-optic barium titanate modulators on silicon photonics platform. IEEE Silicon Photonics Conference (SiPhotonics), 1(2023).

    [19] M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, D. J. McGee. Broadband modulation of light by using an electro-optic polymer. Science, 298, 1401(2002).

    [20] D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, Y. Shi. Demonstration of 110 GHz electro-optic polymer modulators. Appl. Phys. Lett., 70, 3335(1997).

    [21] Y. Tang, K. F. Mak. 2D materials for silicon photonics. Nat. Nanotechnol., 12, 1121(2017).

    [22] D. Akinwande, C. Huyghebaert, C.-H. Wang, M. I. Serna, S. Goossens, L.-J. Li, H. S. P. Wong, F. H. L. Koppens. Graphene and two-dimensional materials for silicon technology. Nature, 573, 507(2019).

    [23] M. H. Kryder. Magneto-optic recording technology. J. Appl. Phys., 57, 3913(1985).

    [24] J. Wu, H. Ma, P. Yin, Y. Ge, Y. Zhang, L. Li, H. Zhang, H. Lin. Two-dimensional materials for integrated photonics: recent advances and future challenges. Small Sci., 1, 2000053(2021).

    [25] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov. Electric field effect in atomically thin carbon films. Science, 306, 666(2004).

    [26] S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, A. Kis. 2D transition metal dichalcogenides. Nat. Rev. Mater., 2, 17033(2017).

    [27] A. Morita. Semiconducting black phosphorus. Appl. Phys. A, 39, 227(1986).

    [28] J. Wang, F. Ma, M. Sun. Graphene, hexagonal boron nitride, and their heterostructures: properties and applications. RSC Adv., 7, 16801(2017).

    [29] K. F. Mak, L. Ju, F. Wang, T. F. Heinz. Optical spectroscopy of graphene: from the far infrared to the ultraviolet. Solid State Commun., 152, 1341(2012).

    [30] F. Xia, H. Yan, P. Avouris. The interaction of light and graphene: basics, devices, and applications. Proc. IEEE, 101, 1717(2013).

    [31] F. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramasubramaniam. Two-dimensional material nanophotonics. Nat. Photonics, 8, 899(2014).

    [32] K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett., 105, 136805(2010).

    [33] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. Wang. Emerging photoluminescence in monolayer MoS2. Nano Lett., 10, 1271(2010).

    [34] V. Tran, R. Soklaski, Y. Liang, L. Yang. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B, 89, 235319(2014).

    [35] H. Liu, Y. Du, Y. Deng, P. D. Ye. Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev., 44, 2732(2015).

    [36] C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, J. Hone. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol., 5, 722(2010).

    [37] J. Dong, L. Zhang, F. Ding. Kinetics of graphene and 2D materials growth. Adv. Mater., 31, 1801583(2019).

    [38] X. Xu, T. Guo, H. Kim, M. K. Hota, R. S. Alsaadi, M. Lanza, X. Zhang, H. N. Alshareef. Growth of 2D materials at the wafer scale. Adv. Mater., 34, 2108258(2022).

    [39] Q. Zhang, D. Geng, W. Hu. Chemical vapor deposition for few-layer two-dimensional materials. SmartMat, 4, e1177(2023).

    [40] B.-J. Park, J.-S. Choi, J.-H. Eom, H. Ha, H. Y. Kim, S. Lee, H. Shin, S.-G. Yoon. Defect-free graphene synthesized directly at 150°C via chemical vapor deposition with no transfer. ACS Nano, 12, 2008(2018).

    [41] B. Qin, M. Z. Saeed, Q. Li, M. Zhu, Y. Feng, Z. Zhou, J. Fang, M. Hossain, Z. Zhang, Y. Zhou, Y. Huangfu, R. Song, J. Tang, B. Li, J. Liu, D. Wang, K. He, H. Zhang, R. Wu, B. Zhao, J. Li, L. Liao, Z. Wei, B. Li, X. F. Duan, X. D. Duan. General low-temperature growth of two-dimensional nanosheets from layered and nonlayered materials. Nat. Commun., 14, 304(2023).

    [42] Y. Gong, Z. Lin, G. Ye, G. Shi, S. Feng, Y. Lei, A. L. Elías, N. Perea-Lopez, R. Vajtai, H. Terrones, Z. Liu, M. Terrones, P. M. Ajayan. Tellurium-assisted low-temperature synthesis of MoS2 and WS2 monolayers. ACS Nano, 9, 11658(2015).

    [43] H. Seok, Y. T. Megra, C. K. Kanade, J. Cho, V. K. Kanade, M. Kim, I. Lee, P. J. Yoo, H.-U. Kim, J. W. Suk, T. Kim. Low-temperature synthesis of wafer-scale MoS2–WS2 vertical heterostructures by single-step penetrative plasma sulfurization. ACS Nano, 15, 707(2021).

    [44] C. Ahn, J. Lee, H.-U. Kim, H. Bark, M. Jeon, G. H. Ryu, Z. Lee, G. Y. Yeom, K. Kim, J. Jung, Y. Kim, C. Lee, T. Kim. Low-temperature synthesis of large-scale molybdenum disulfide thin films directly on a plastic substrate using plasma-enhanced chemical vapor deposition. Adv. Mate., 27, 5223(2015).

    [45] H. Park, T. K. Kim, S. W. Cho, H. S. Jang, S. I. Lee, S.-Y. Choi. Large-scale synthesis of uniform hexagonal boron nitride films by plasma-enhanced atomic layer deposition. Sci. Rep., 7, 40091(2017).

    [46] J. K. Sprenger, H. Sun, A. S. Cavanagh, A. Roshko, P. T. Blanchard, S. M. George. Electron-enhanced atomic layer deposition of boron nitride thin films at room temperature and 100°C. J. Phys. Chem. C, 122, 9455(2018).

    [47] T. Kim, J. Mun, H. Park, D. Joung, M. Diware, C. Won, J. Park, S.-H. Jeong, S.-W. Kang. Wafer-scale production of highly uniform two-dimensional MoS2 by metal-organic chemical vapor deposition. Nanotechnology, 28, 18LT01(2017).

    [48] M. Romagnoli, V. Sorianello, M. Midrio, F. H. L. Koppens, C. Huyghebaert, D. Neumaier, P. Galli, W. Templ, A. D’Errico, A. C. Ferrari. Graphene-based integrated photonics for next-generation datacom and telecom. Nat. Rev. Mater., 3, 392(2018).

    [49] A. K. Geim. Graphene: status and prospects. Science, 324, 1530(2009).

    [50] M. J. Allen, V. C. Tung, R. B. Kaner. Honeycomb carbon: a review of graphene. Chem. Rev., 110, 132(2010).

    [51] P. Avouris. Graphene: electronic and photonic properties and devices. Nano Lett., 10, 4285(2010).

    [52] G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink, P. J. Kelly. Doping graphene with metal contacts. Phys. Rev. Lett., 101, 026803(2008).

    [53] W. J. Yu, L. Liao, S. H. Chae, Y. H. Lee, X. Duan. Toward tunable band gap and tunable Dirac point in bilayer graphene with molecular doping. Nano Lett., 11, 4759(2011).

    [54] J. Yan, Y. Zhang, P. Kim, A. Pinczuk. Electric field effect tuning of electron-phonon coupling in graphene. Phys. Rev. Lett., 98, 166802(2007).

    [55] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer. Ultrahigh electron mobility in suspended graphene. Solid State Commun., 146, 351(2008).

    [56] M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang. A graphene-based broadband optical modulator. Nature, 474, 64(2011).

    [57] I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, K. L. Shepard. Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat. Nanotechnol., 3, 654(2008).

    [58] K. Chang, Z. Li, Y. Gu, K. Liu, K. Chen. Graphene-integrated waveguides: properties, preparation, and applications. Nano Res., 15, 9704(2022).

    [59] L. Yu, D. Dai, S. He. Graphene-based transparent flexible heat conductor for thermally tuning nanophotonic integrated devices. Appl. Phys. Lett., 105, 251104(2014).

    [60] L. Yu, Y. Yin, Y. Shi, D. Dai, S. He. Thermally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters. Optica, 3, 159(2016).

    [61] S. Yan, X. Zhu, L. H. Frandsen, S. Xiao, N. A. Mortensen, J. Dong, Y. Ding. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides. Nat. Commun., 8, 14411(2017).

    [62] S. Nakamura, K. Sekiya, S. Matano, Y. Shimura, Y. Nakade, K. Nakagawa, Y. Monnai, H. Maki. High-speed and on-chip optical switch based on a graphene microheater. ACS Nano, 16, 2690(2022).

    [63] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau. Superior thermal conductivity of single-layer graphene. Nano Lett., 8, 902(2008).

    [64] Z. Fang, R. Chen, J. Zheng, A. I. Khan, K. M. Neilson, S. J. Geiger, D. M. Callahan, M. G. Moebius, A. Saxena, M. E. Chen, C. Rios, J. Hu, E. Pop, A. Majumdar. Ultra-low-energy programmable non-volatile silicon photonics based on phase-change materials with graphene heaters. Nat. Nanotechnol., 17, 842(2022).

    [65] Y. Hu, M. Pantouvaki, J. Van Campenhout, S. Brems, I. Asselberghs, C. Huyghebaert, P. Absil, D. Van Thourhout. Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon. Laser Photon. Rev., 10, 307(2016).

    [66] C. Alessandri, I. Asselberghs, S. Brems, C. Huyghebaert, J. Van Campenhout, D. Van Thourhout, M. Pantouvaki. High speed single-layer graphene-Si electro-absorption modulator. CLEO Pacific Rim Conference, Th4G.3(2018).

    [67] C. Alessandri, I. Asselberghs, S. Brems, C. Huyghebaert, J. Van Campenhout, D. Van Thourhout, M. Pantouvaki. High speed graphene-silicon electro-absorption modulators for the O-band and C-band. Jpn J. Appl. Phys., 59, 052008(2020).

    [68] C. Alessandri, I. Asselberghs, S. Brems, C. Huyghebaert, J. Van Campenhout, D. Van Thourhout, M. Pantouvaki. 5 × 25 Gbit/s WDM transmitters based on passivated graphene-silicon electro-absorption modulators. Appl. Opt., 59, 1156(2020).

    [69] X. Gan, R.-J. Shiue, Y. Gao, K. F. Mak, X. Yao, L. Li, A. Szep, D. Walker, J. Hone, T. F. Heinz, D. Englund. High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene. Nano Lett., 13, 691(2013).

    [70] A. Majumdar, J. Kim, J. Vuckovic, F. Wang. Electrical control of silicon photonic crystal cavity by graphene. Nano Lett., 13, 515(2013).

    [71] M. Liu, X. Yin, X. Zhang. Double-layer graphene optical modulator. Nano Lett., 12, 1482(2012).

    [72] M. A. Giambra, V. Sorianello, V. Miseikis, S. Marconi, A. Montanaro, P. Galli, S. Pezzini, C. Coletti, M. Romagnoli. High-speed double layer graphene electro-absorption modulator on SOI waveguide. Opt. Express, 27, 20145(2019).

    [73] Z. Cheng, X. Zhu, M. Galili, L. H. Frandsen, H. Hu, S. Xiao, J. Dong, Y. Ding, L. K. Oxenløwe, X. Zhang. Double-layer graphene on photonic crystal waveguide electro-absorption modulator with 12 GHz bandwidth. Nanophotonics, 9, 2377(2020).

    [74] C. T. Phare, Y.-H. Daniel Lee, J. Cardenas, M. Lipson. Graphene electro-optic modulator with 30 GHz bandwidth. Nat. Photonics, 9, 511(2015).

    [75] B. S. Lee, B. Kim, A. P. Freitas, A. Mohanty, Y. Zhu, G. R. Bhatt, J. Hone, M. Lipson. High-performance integrated graphene electro-optic modulator at cryogenic temperature. Nanophotonics, 10, 99(2020).

    [76] M. Kleinert, F. Herziger, P. Reinke, C. Zawadzki, D. de Felipe, W. Brinker, H.-G. Bach, N. Keil, J. Maultzsch, M. Schell. Graphene-based electro-absorption modulator integrated in a passive polymer waveguide platform. Opt. Mater. Express, 6, 1800(2016).

    [77] T. Lian, K. Yang, X. Wang, M. Jiang, S. Sun, D. Niu, D. Zhang. Electro-absorption optical modulator based on graphene-buried polymer waveguides. IEEE Photonics J., 12, 6601610(2020).

    [78] N. Youngblood, Y. Anugrah, R. Ma, S. J. Koester, M. Li. Multifunctional graphene optical modulator and photodetector integrated on silicon waveguides. Nano Lett., 14, 2741(2014).

    [79] M. Mohsin, D. Schall, M. Otto, A. Noculak, D. Neumaier, H. Kurz. Graphene based low insertion loss electro-absorption modulator on SOI waveguide. Opt. Express, 22, 15292(2014).

    [80] H. Dalir, Y. Xia, Y. Wang, X. Zhang. Athermal broadband graphene optical modulator with 35 GHz speed. ACS Photonics, 3, 1564(2016).

    [81] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, A. K. Geim. Fine structure constant defines visual transparency of graphene. Science, 320, 1308(2008).

    [82] Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, K. Yvind. Effective electro-optical modulation with high extinction ratio by a graphene-silicon microring resonator. Nano Lett., 15, 4393(2015).

    [83] C. Qiu, W. Gao, R. Vajtai, P. M. Ajayan, J. Kono, Q. Xu. Efficient modulation of 1.55 µm radiation with gated graphene on a silicon microring resonator. Nano Lett., 14, 6811(2014).

    [84] X. Ban, M. Zhong, B. E. Little. Broadband hybrid plasmonic graphene modulator operating at mid-infrared wavelength. Optik, 247, 168036(2021).

    [85] S. Liu, M. Wang, T. Liu, Y. Xu, J. Yue, Y. Yi, X. Sun, D. Zhang. Polarization-insensitive graphene modulator based on hybrid plasmonic waveguide. Photonics, 9, 609(2022).

    [86] S. Liu, M. Wang, T. Liu, Y. Xu, J. Yue, Y. Yi, X. Sun, D. Zhang. Modulation instability of surface plasmon polaritons in graphene double-layer structure. Proc. SPIE, 12569, 125690G(2023).

    [87] Q. Bao, K. P. Loh. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano, 6, 3677(2012).

    [88] J. Guo, J. Li, C. Liu, Y. Yin, W. Wang, Z. Ni, Z. Fu, H. Yu, Y. Xu, Y. Shi, Y. Ma, S. Gao, L. Tong, D. Dai. High-performance silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm. Light Sci. Appl., 9, 29(2020).

    [89] Z. Ni, L. Ma, S. Du, Y. Xu, M. Yuan, H. Fang, Z. Wang, M. Xu, D. Li, J. Yang, W. Hu, X. Pi, D. Yang. Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors. ACS Nano, 11, 9854(2017).

    [90] Z. Liang, J. Sun, Y. Jiang, L. Jiang, X. Chen. Plasmonic enhanced optoelectronic devices. Plasmonics, 9, 859(2014).

    [91] L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, F. Wang. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol., 6, 630(2011).

    [92] S. Thongrattanasiri, F. H. L. Koppens, F. J. García de Abajo. Complete optical absorption in periodically patterned graphene. Phys. Rev. Lett., 108, 047401(2012).

    [93] M. H. Rezaei, M. Shiri. High-performance tunable resonant electro-optical modulator based on suspended graphene waveguides. Opt. Express, 29, 16299(2021).

    [94] R. Hao, W. Du, H. Chen, X. Jin, L. Yang, E. Li. Ultra-compact optical modulator by graphene induced electro-refraction effect. Appl. Phys. Lett., 103, 061116(2013).

    [95] M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, H. Kurz. Experimental verification of electro-refractive phase modulation in graphene. Sci. Rep., 5, 10967(2015).

    [96] V. Sorianello, M. Midrio, G. Contestabile, I. Asselberghs, J. Van Campenhout, C. Huyghebaert, I. Goykhman, A. K. Ott, A. C. Ferrari, M. Romagnoli. Graphene–silicon phase modulators with gigahertz bandwidth. Nat. Photonics, 12, 40(2018).

    [97] V. Sorianello, G. De Angelis, T. Cassese, M. Midrio, M. Romagnoli, M. Moshin, M. Otto, D. Neumaier, I. Asselberghs, J. Van Campenhout, C. Huyghebaert. Complex effective index in graphene-silicon waveguides. Opt. Express, 24, 29984(2016).

    [98] H. Shu, Z. Su, L. Huang, Z. Wu, X. Wang, Z. Zhang, Z. Zhou. Significantly high modulation efficiency of compact graphene modulator based on silicon waveguide. Sci. Rep., 8, 991(2018).

    [99] Z. Chai, X. Hu, F. Wang, X. Niu, J. Xie, Q. Gong. Ultrafast all-optical switching. Adv. Opt. Mater., 5, 1600665(2017).

    [100] S. Yu, X. Wu, K. Chen, B. Chen, X. Guo, D. Dai, L. Tong, W. Liu, Y. Ron Shen. All-optical graphene modulator based on optical Kerr phase shift. Optica, 3, 541(2016).

    [101] F. Sun, L. Xia, C. Nie, J. Shen, Y. Zou, G. Cheng, H. Wu, Y. Zhang, D. Wei, S. Yin, C. Du. The all-optical modulator in dielectric-loaded waveguide with graphene-silicon heterojunction structure. Nanotechnology, 29, 135201(2018).

    [102] T. Guo, S. Gao, H. Zeng, L. Tang, C. Qiu. All-optical control of a single resonance in a graphene-on-silicon nanobeam cavity using thermo-optic effect. J. Lightwave Technol., 39, 4710(2021).

    [103] F. Sun, L. Xia, C. Nie, C. Qiu, L. Tang, J. Shen, T. Sun, L. Yu, P. Wu, S. Yin, S. Yan, C. Du. An all-optical modulator based on a graphene–plasmonic slot waveguide at 1550 nm. Appl. Phys. Express, 12, 042009(2019).

    [104] M. Ono, M. Hata, M. Tsunekawa, K. Nozaki, H. Sumikura, H. Chiba, M. Notomi. Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides. Nat. Photonics, 14, 37(2020).

    [105] Z. Shi, L. Gan, T.-H. Xiao, H.-L. Guo, Z.-Y. Li. All-optical modulation of a graphene-cladded silicon photonic crystal cavity. ACS Photonics, 2, 1513(2015).

    [106] L. Jiang, Q. Huang, K. S. Chiang. Low-power all-optical switch based on a graphene-buried polymer waveguide Mach–Zehnder interferometer. Opt. Express, 30, 6786(2022).

    [107] T. Yu, F. Wang, Y. Xu, L. Ma, X. Pi, D. Yang. Graphene coupled with silicon quantum dots for high-performance bulk-silicon-based Schottky-Junction photodetectors. Adv. Mater., 28, 4912(2016).

    [108] F. Liu, K. Liu, S. Rafique, Z. Xu, W. Niu, X. Li, Y. Wang, L. Deng, J. Wang, X. Yue, T. Li, J. Wang, P. Ayala, C. Cong, Y. Qin, A. Yu, N. Chi, Y. Zhan. Highly efficient and stable self-powered mixed tin-lead perovskite photodetector used in remote wearable health monitoring technology. Adv. Sci., 10, e2205879(2023).

    [109] C.-H. Liu, Y.-C. Chang, T. B. Norris, Z. Zhong. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat. Nanotechnol., 9, 273(2014).

    [110] F. Xia, T. Mueller, Y.-M. Lin, A. Valdes-Garcia, P. Avouris. Ultrafast graphene photodetector. Nat. Nanotechnol., 4, 839(2009).

    [111] X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, D. Englund. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics, 7, 883(2013).

    [112] X. Wang, Z. Cheng, K. Xu, H. K. Tsang, J.-B. Xu. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nat. Photonics, 7, 888(2013).

    [113] A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, T. Mueller. CMOS-compatible graphene photodetector covering all optical communication bands. Nat. Photonics, 7, 892(2013).

    [114] D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger, W. Templ, A. L. Giesecke, H. Kurz. 50 Gbit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems. ACS Photonics, 1, 781(2014).

    [115] H. Jiang, J. Wei, F. Sun, C. Nie, J. Fu, H. Shi, J. Sun, X. Wei, C. W. Qiu. Enhanced photogating effect in graphene photodetectors via potential fluctuation engineering. ACS Nano, 16, 4458(2022).

    [116] J. C. Song, M. S. Rudner, C. M. Marcus, L. S. Levitov. Hot carrier transport and photocurrent response in graphene. Nano Lett., 11, 4688(2011).

    [117] S. Piscanec, M. Lazzeri, F. Mauri, A. C. Ferrari, J. Robertson. Kohn anomalies and electron-phonon interactions in graphite. Phys. Rev. Lett., 93, 185503(2004).

    [118] R. Bistritzer, A. H. MacDonald. Electronic cooling in graphene. Phys. Rev. Lett., 102, 206410(2009).

    [119] D. Sun, G. Aivazian, A. M. Jones, J. S. Ross, W. Yao, D. Cobden, X. Xu. Ultrafast hot-carrier-dominated photocurrent in graphene. Nat. Nanotechnol., 7, 114(2012).

    [120] K. J. Tielrooij, L. Piatkowski, M. Massicotte, A. Woessner, Q. Ma, Y. Lee, K. S. Myhro, C. N. Lau, P. Jarillo-Herrero, N. F. van Hulst, F. H. Koppens. Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating. Nat. Nanotechnol., 10, 437(2015).

    [121] S. Schuler, D. Schall, D. Neumaier, L. Dobusch, O. Bethge, B. Schwarz, M. Krall, T. Mueller. Controlled generation of a p-n junction in a waveguide integrated graphene photodetector. Nano Lett., 16, 7107(2016).

    [122] S. Schuler, J. E. Muench, A. Ruocco, O. Balci, D. V. Thourhout, V. Sorianello, M. Romagnoli, K. Watanabe, T. Taniguchi, I. Goykhman, A. C. Ferrari, T. Mueller. High-responsivity graphene photodetectors integrated on silicon microring resonators. Nat. Commun., 12, 3733(2021).

    [123] M. Freitag, T. Low, F. Xia, P. Avouris. Photoconductivity of biased graphene. Nat. Photonics, 7, 53(2013).

    [124] J. Gosciniak, J. B. Khurgin. On-chip ultrafast plasmonic graphene hot electron bolometric photodetector. ACS Omega, 5, 14711(2020).

    [125] J. Yan, M. H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, H. D. Drew. Dual-gated bilayer graphene hot-electron bolometer. Nat. Nanotechnol., 7, 472(2012).

    [126] J. Gosciniak, M. Rasras, J. B. Khurgin. Ultrafast plasmonic graphene photodetector based on the channel photothermoelectric effect. ACS Photonics, 7, 488(2020).

    [127] J. E. Muench, A. Ruocco, M. A. Giambra, V. Miseikis, D. Zhang, J. Wang, H. F. Y. Watson, G. C. Park, S. Akhavan, V. Sorianello, M. Midrio, A. Tomadin, C. Coletti, M. Romagnoli, A. C. Ferrari, I. Goykhman. Waveguide-integrated, plasmonic enhanced graphene photodetectors. Nano Lett., 19, 7632(2019).

    [128] Z. Ma, K. Kikunaga, H. Wang, S. Sun, R. Amin, R. Maiti, M. H. Tahersima, H. Dalir, M. Miscuglio, V. J. Sorger. Compact graphene plasmonic slot photodetector on silicon-on-insulator with high responsivity. ACS Photonics, 7, 932(2020).

    [129] V. Ryzhii, M. Ryzhii, D. S. Ponomarev, V. G. Leiman, V. Mitin, M. S. Shur, T. Otsuji. Negative photoconductivity and hot-carrier bolometric detection of terahertz radiation in graphene-phosphorene hybrid structures. J. Appl. Phys., 125, 151608(2019).

    [130] N. Youngblood, C. Chen, S. J. Koester, M. Li. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photonics, 9, 247(2015).

    [131] R.-J. Shiue, Y. Gao, Y. Wang, C. Peng, A. D. Robertson, D. K. Efetov, S. Assefa, F. H. Koppens, J. Hone, D. Englund. High-responsivity graphene-boron nitride photodetector and autocorrelator in a silicon photonic integrated circuit. Nano Lett., 15, 7288(2015).

    [132] S. Yan, Y. Zuo, S. Xiao, L. K. Oxenløwe, Y. Ding. Graphene photodetector employing double slot structure with enhanced responsivity and large bandwidth. Opto-Electronic Advances, 5, 210159(2022).

    [133] I. Vangelidis, D. V. Bellas, S. Suckow, G. Dabos, S. Castilla, F. H. L. Koppens, A. C. Ferrari, N. Pleros, E. Lidorikis. Unbiased plasmonic-assisted integrated graphene photodetectors. ACS Photonics, 9, 1992(2022).

    [134] P. Ma, Y. Salamin, B. Baeuerle, A. Josten, W. Heni, A. Emboras, J. Leuthold. Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high responsivity, and compact size. ACS Photonics, 6, 154(2018).

    [135] M. A. Giambra, V. Mišeikis, S. Pezzini, S. Marconi, A. Montanaro, F. Fabbri, V. Sorianello, A. C. Ferrari, C. Coletti, M. Romagnoli. Wafer-scale integration of graphene-based photonic devices. ACS Nano, 15, 3171(2021).

    [136] H. Guan, J. Hong, X. Wang, J. Ming, Z. Zhang, A. Liang, X. Han, J. Dong, W. Qiu, Z. Chen, H. Lu, H. Zhang. Broadband, high-sensitivity graphene photodetector based on ferroelectric polarization of lithium niobate. Adv. Opt. Mater., 9, 2100245(2021).

    [137] S. Zhu, Y. Zhang, Y. Ren, Y. Wang, K. Zhai, H. Feng, Y. Jin, Z. Lin, J. Feng, S. Li, Q. Yang, N. H. Zhu, E. Y.-B. Pun, C. Wang. Waveguide-integrated two-dimensional material photodetectors in thin-film lithium niobate. Adv. Photonics Res., 4, 2300045(2023).

    [138] C. Wu, S. Brems, D. Yudistira, D. Cott, A. Milenin, K. Vandersmissen, A. Maestre, A. Centeno, A. Zurutuza, J. Van Campenhout, C. Huyghebaert, D. Van Thourhout, M. Pantouvaki. Wafer-scale integration of single layer graphene electro-absorption modulators in a 300 mm CMOS pilot line. Laser Photon. Rev., 17, 2200789(2023).

    [139] N. Huo, Y. Yang, J. Li. Optoelectronics based on 2D TMDs and heterostructures. J. Semicond., 38, 031002(2017).

    [140] C. Tan, H. Zhang. Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev., 44, 2713(2015).

    [141] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 7, 699(2012).

    [142] M. M. Ugeda, A. J. Bradley, S. F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S. K. Mo, Z. Hussain, Z. X. Shen, F. Wang, S. G. Louie, M. F. Crommie. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater., 13, 1091(2014).

    [143] A. Ramasubramaniam. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B, 86, 115409(2012).

    [144] H. J. Kim, G. H. Ahn, J. Cho, M. Amani, J. P. Mastandrea, C. K. Groschner, D. H. Lien, Y. Zhao, J. W. Ager, M. C. Scott, D. C. Chrzan, A. Javey. Synthetic WSe2 monolayers with high photoluminescence quantum yield. Sci. Adv., 5, eaau4728(2019).

    [145] H. Chen, V. Corboliou, A. S. Solntsev, D. Y. Choi, M. A. Vincenti, D. de Ceglia, C. de Angelis, Y. Lu, D. N. Neshev. Enhanced second-harmonic generation from two-dimensional MoSe2 on a silicon waveguide. Light Sci. Appl., 6, e17060(2017).

    [146] N. Kumar, S. Najmaei, Q. Cui, F. Ceballos, P. M. Ajayan, J. Lou, H. Zhao. Second harmonic microscopy of monolayer MoS2. Phys. Rev. B, 87, 161403(R)(2013).

    [147] X. Wen, Z. Gong, D. Li. Nonlinear optics of two-dimensional transition metal dichalcogenides. InfoMat, 1, 317(2019).

    [148] S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, X. Xu. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature, 520, 69(2015).

    [149] X. Ge, M. Minkov, S. Fan, X. Li, W. Zhou. Laterally confined photonic crystal surface emitting laser incorporating monolayer tungsten disulfide. NPJ 2D Mater. Appl., 3, 16(2019).

    [150] Y. Ye, Z. J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen, Y. Wang, X. Zhang. Monolayer excitonic laser. Nat. Photonics, 9, 733(2015).

    [151] O. Salehzadeh, M. Djavid, N. H. Tran, I. Shih, Z. Mi. Optically pumped two-dimensional MoS2 lasers operating at room-temperature. Nano Lett., 15, 5302(2015).

    [152] J. C. Reed, A. Y. Zhu, H. Zhu, F. Yi, E. Cubukcu. Wavelength tunable microdisk cavity light source with a chemically enhanced MoS2 emitter. Nano Lett., 15, 1967(2015).

    [153] N. M. H. Duong, Z.-Q. Xu, M. Kianinia, R. Su, Z. Liu, S. Kim, C. Bradac, T. T. Tran, Y. Wan, L.-J. Li, A. Solntsev, J. Liu, I. Aharonovich. Enhanced emission from WSe2 monolayers coupled to circular Bragg gratings. ACS Photonics, 5, 3950(2018).

    [154] J. Sung, D. Shin, H. Cho, S. W. Lee, S. Park, Y. D. Kim, J. S. Moon, J.-H. Kim, S.-H. Gong. Room-temperature continuous-wave indirect-bandgap transition lasing in an ultra-thin WS2 disk. Nat. Photonics, 16, 792(2022).

    [155] Y.-Q. Bie, G. Grosso, M. Heuck, M. M. Furchi, Y. Cao, J. Zheng, D. Bunandar, E. Navarro-Moratalla, L. Zhou, D. K. Efetov, T. Taniguchi, K. Watanabe, J. Kong, D. Englund, P. Jarillo-Herrero. A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits. Nat. Nanotechnol., 12, 1124(2017).

    [156] Y. Li, J. Zhang, D. Huang, H. Sun, F. Fan, J. Feng, Z. Wang, C. Z. Ning. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity. Nat. Nanotechnol., 12, 987(2017).

    [157] H. Fang, J. Liu, H. Li, L. Zhou, L. Liu, J. Li, X. Wang, T. F. Krauss, Y. Wang. 1305 nm few-layer MoTe2-on-silicon laser-like emission. Laser Photon. Rev., 12, 1800015(2018).

    [158] E. Y. Paik, L. Zhang, G. W. Burg, R. Gogna, E. Tutuc, H. Deng. Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures. Nature, 576, 80(2019).

    [159] Y. Liu, H. Fang, A. Rasmita, Y. Zhou, J. Li, T. Yu, Q. Xiong, N. Zheludev, J. Liu, W. Gao. Room temperature nanocavity laser with interlayer excitons in 2D heterostructures. Sci. Adv., 5, eaav4506(2019).

    [160] R. Maiti, C. Patil, M. A. S. R. Saadi, T. Xie, J. G. Azadani, B. Uluutku, R. Amin, A. F. Briggs, M. Miscuglio, D. Van Thourhout, S. D. Solares, T. Low, R. Agarwal, S. R. Bank, V. J. Sorger. Strain-engineered high-responsivity MoTe2 photodetector for silicon photonic integrated circuits. Nat. Photonics, 14, 578(2020).

    [161] X. Zong, H. Hu, G. Ouyang, J. Wang, R. Shi, L. Zhang, Q. Zeng, C. Zhu, S. Chen, C. Cheng, B. Wang, H. Zhang, Z. Liu, W. Huang, T. Wang, L. Wang, X. Chen. Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications. Light Sci. Appl., 9, 114(2020).

    [162] O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol., 8, 497(2013).

    [163] J. Wu, H. Schmidt, K. K. Amara, X. Xu, G. Eda, B. Ozyilmaz. Large thermoelectricity via variable range hopping in chemical vapor deposition grown single-layer MoS2. Nano Lett., 14, 2730(2014).

    [164] W. Zhang, M. H. Chiu, C. H. Chen, W. Chen, L. J. Li, A. T. Wee. Role of metal contacts in high-performance phototransistors based on WSe2 monolayers. ACS Nano, 8, 8653(2014).

    [165] P. Ma, N. Flöry, Y. Salamin, B. Baeuerle, A. Emboras, A. Josten, T. Taniguchi, K. Watanabe, L. Novotny, J. Leuthold. Fast MoTe2 waveguide photodetector with high sensitivity at telecommunication wavelengths. ACS Photonics, 5, 1846(2018).

    [166] N. Flöry, P. Ma, Y. Salamin, A. Emboras, T. Taniguchi, K. Watanabe, J. Leuthold, L. Novotny. Waveguide-integrated van der Waals heterostructure photodetector at telecom wavelengths with high speed and high responsivity. Nat. Nanotechnol., 15, 118(2020).

    [167] Y. Gao, G. Zhou, H. K. Tsang, C. Shu. High-speed van der Waals heterostructure tunneling photodiodes integrated on silicon nitride waveguides. Optica, 6, 514(2019).

    [168] X. X. Liang, H. Guan, K. Luo, Z. He, A. Liang, W. Zhang, Q. Lin, Z. Yang, H. Zhang, C. Xu, H. Xie, F. Liu, F. Ma, T. Yang, H. Lu. Van der Waals integrated LiNbO3/WS2 for high-performance UV–Vis–NIR photodetection. Laser Photon. Rev., 2300286(2023).

    [169] J. F. Gonzalez Marin, D. Unuchek, K. Watanabe, T. Taniguchi, A. Kis. MoS2 photodetectors integrated with photonic circuits. npj 2D Mater. Appl., 3, 14(2019).

    [170] Y. Yi, Z. Sun, J. Li, P. K. Chu, X. F. Yu. Optical and optoelectronic properties of black phosphorus and recent photonic and optoelectronic applications. Small Methods, 3, 1900165(2019).

    [171] Y. Xu, Z. Shi, X. Shi, K. Zhang, H. Zhang. Recent progress in black phosphorus and black-phosphorus-analogue materials: properties, synthesis and applications. Nanoscale, 11, 14491(2019).

    [172] Y. Cai, G. Zhang, Y.-W. Zhang. Layer-dependent band alignment and work function of few-layer phosphorene. Sci. Rep., 4, 6677(2014).

    [173] S. Das, W. Zhang, M. Demarteau, A. Hoffmann, M. Dubey, A. Roelofs. Tunable transport gap in phosphorene. Nano Lett., 14, 5733(2014).

    [174] B. Deng, V. Tran, Y. Xie, H. Jiang, C. Li, Q. Guo, X. Wang, H. Tian, S. J. Koester, H. Wang, J. J. Cha, Q. Xia, L. Yang, F. Xia. Efficient electrical control of thin-film black phosphorus bandgap. Nat. Commun., 8, 14474(2017).

    [175] C. R. Ryder, J. D. Wood, S. A. Wells, M. C. Hersam. Chemically tailoring semiconducting two-dimensional transition metal dichalcogenides and black phosphorus. ACS Nano, 10, 3900(2016).

    [176] J. Kim, S. S. Baik, S. H. Ryu, Y. Sohn, S. Park, B. G. Park, J. Denlinger, Y. Yi, H. J. Choi, K. S. Kim. Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus. Science, 349, 723(2015).

    [177] A. S. Rodin, A. Carvalho, A. H. Castro Neto. Strain-induced gap modification in black phosphorus. Phys. Rev. Lett., 112, 176801(2014).

    [178] H. Kim, S. Z. Uddin, D. H. Lien, M. Yeh, N. S. Azar, S. Balendhran, T. Kim, N. Gupta, Y. Rho, C. P. Grigoropoulos, K. B. Crozier, A. Javey. Actively variable-spectrum optoelectronics with black phosphorus. Nature, 596, 232(2021).

    [179] L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, Y. Zhang. Black phosphorus field-effect transistors. Nat. Nanotechnol., 9, 372(2014).

    [180] S. Zhang, J. Yang, R. Xu, F. Wang, W. Li, M. Ghufran, Y. W. Zhang, Z. Yu, G. Zhang, Q. Qin, Y. Lu. Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene. ACS Nano, 8, 9590(2014).

    [181] L. Li, J. Kim, C. Jin, G. J. Ye, D. Y. Qiu, F. H. da Jornada, Z. Shi, L. Chen, Z. Zhang, F. Yang, K. Watanabe, T. Taniguchi, W. Ren, S. G. Louie, X. H. Chen, Y. Zhang, F. Wang. Direct observation of the layer-dependent electronic structure in phosphorene. Nat. Nanotechnol., 12, 21(2017).

    [182] J. Zheng, Z. Yang, C. Si, Z. Liang, X. Chen, R. Cao, Z. Guo, K. Wang, Y. Zhang, J. Ji, M. Zhang, D. Fan, H. Zhang. Black phosphorus based all-optical-signal-processing: toward high performances and enhanced stability. ACS Photonics, 4, 1466(2017).

    [183] K. Wang, B. M. Szydlowska, G. Wang, X. Zhang, J. J. Wang, J. J. Magan, L. Zhang, J. N. Coleman, J. Wang, W. J. Blau. Ultrafast nonlinear excitation dynamics of black phosphorus nanosheets from visible to mid-infrared. ACS Nano, 10, 6923(2016).

    [184] S. Huang, X. Ling. Black phosphorus: optical characterization, properties and applications. Small, 13, 1700823(2017).

    [185] C. Chen, N. Youngblood, R. Peng, D. Yoo, D. A. Mohr, T. W. Johnson, S. H. Oh, M. Li. Three-dimensional integration of black phosphorus photodetector with silicon photonics and nanoplasmonics. Nano Lett., 17, 985(2017).

    [186] Y. Yin, R. Cao, J. Guo, C. Liu, J. Li, X. Feng, H. Wang, W. Du, A. Qadir, H. Zhang, Y. Ma, S. Gao, Y. Xu, Y. Shi, L. Tong, D. Dai. High-speed and high-responsivity hybrid silicon/black-phosphorus waveguide photodetectors at 2 μm. Laser Photon. Rev., 13, 1900032(2019).

    [187] S. Yuan, D. Naveh, K. Watanabe, T. Taniguchi, F. Xia. A wavelength-scale black phosphorus spectrometer. Nat. Photonics, 15, 601(2021).

    [188] Y. Ma, B. Dong, J. Wei, Y. Chang, L. Huang, K. W. Ang, C. Lee. High-responsivity mid-infrared black phosphorus slow light waveguide photodetector. Adv. Opt. Mater., 8, 2000337(2020).

    [189] R. Tian, L. Gu, Y. Ji, C. Li, Y. Chen, S. Hu, Z. Li, X. Gan, J. Zhao. Black phosphorus photodetector enhanced by a planar photonic crystal cavity. ACS Photonics, 8, 3104(2021).

    [190] Y. Xue, X. Wu, K. Chen, J. Wang, L. Liu. Waveguide integrated high-speed black phosphorus photodetector on a thin-film lithium niobate platform. Opt. Mater. Express, 13, 272(2023).

    [191] S. N. S. Yadav, P.-L. Chen, C. H. Liu, T. J. Yen. Plasmonic metasurface integrated black phosphorus-based mid-infrared photodetector with high responsivity and speed. Adv. Mater. Interfaces, 10, 2202403(2023).

    [192] S. Wang, R. J. Chapman, B. C. Johnson, I. Krasnokutska, J. L. J. Tambasco, K. Messalea, A. Peruzzo, J. Bullock. Integration of black phosphorus photoconductors with lithium niobate on insulator photonics. Adv. Opt. Mater., 11, 2201688(2023).

    [193] Q. Cai, D. Scullion, W. Gan, A. Falin, S. Zhang, K. Watanabe, T. Taniguchi, Y. Chen, E. J. G. Santos, L. H. Li. High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion. Sci. Adv., 5, eaav0129(2019).

    [194] C. Elias, P. Valvin, T. Pelini, A. Summerfield, C. J. Mellor, T. S. Cheng, L. Eaves, C. T. Foxon, P. H. Beton, S. V. Novikov, B. Gil, G. Cassabois. Direct band-gap crossover in epitaxial monolayer boron nitride. Nat. Commun., 10, 2639(2019).

    [195] L. Liu, Y. P. Feng, Z. X. Shen. Structural and electronic properties of h-BN. Phys. Rev. B, 68, 104102(2003).

    [196] M. Yankowitz, Q. Ma, P. Jarillo-Herrero, B. J. LeRoy. Van der Waals heterostructures combining graphene and hexagonal boron nitride. Nat. Rev. Phys., 1, 112(2019).

    [197] Z. Liu, L. Ma, G. Shi, W. Zhou, Y. Gong, S. Lei, X. Yang, J. Zhang, J. Yu, K. P. Hackenberg, A. Babakhani, J. C. Idrobo, R. Vajtai, J. Lou, P. M. Ajayan. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nat. Nanotechnol., 8, 119(2013).

    [198] J. D. Caldwell, I. Aharonovich, G. Cassabois, J. H. Edgar, B. Gil, D. N. Basov. Photonics with hexagonal boron nitride. Nat. Rev. Mater., 4, 552(2019).

    [199] J. Ren, P. Innocenzi. 2D boron nitride heterostructures: recent advances and future challenges. Small Struct., 2, 2100068(2021).

    [200] Q. Li, M. Liu, Y. Zhang, Z. Liu. Hexagonal boron nitride-graphene heterostructures: synthesis and interfacial properties. Small, 12, 32(2016).

    [201] D. N. Futaba. Hexagonal boron nitride heterostructures go large. Nat. Electron., 6, 104(2023).

    [202] T. Q. P. Vuong, G. Cassabois, P. Valvin, E. Rousseau, A. Summerfield, C. J. Mellor, Y. Cho, T. S. Cheng, J. D. Albar, L. Eaves, C. T. Foxon, P. H. Beton, S. V. Novikov, B. Gil. Deep ultraviolet emission in hexagonal boron nitride grown by high-temperature molecular beam epitaxy. 2D Mater., 4, 021023(2017).

    [203] D. V. Shtansky, K. L. Firestein, D. V. Golberg. Fabrication and application of BN nanoparticles, nanosheets and their nanohybrids. Nanoscale, 10, 17477(2018).

    [204] S. Kim, N. M. H. Duong, M. Nguyen, T. J. Lu, M. Kianinia, N. Mendelson, A. Solntsev, C. Bradac, D. R. Englund, I. Aharonovich. Integrated on chip platform with quantum emitters in layered materials. Adv. Opt. Mater., 7, 1901132(2019).

    [205] Y. Liu, N. O. Weiss, X. Duan, H.-C. Cheng, Y. Huang, X. Duan. Van der Waals heterostructures and devices. Nat. Rev. Mater., 1, 16042(2016).

    [206] A. K. Geim, I. V. Grigorieva. Van der Waals heterostructures. Nature, 499, 419(2013).

    [207] D. Jariwala, T. J. Marks, M. C. Hersam. Mixed-dimensional van der Waals heterostructures. Nat. Mater., 16, 170(2017).

    [208] J.-S. Kim, J. T. Kim. Silicon electro-absorption modulator based on graphene-hexagonal boron nitride heterostructure. J. Lightwave Technol., 34, 5293(2016).

    [209] H. Agarwal, B. Terres, L. Orsini, A. Montanaro, V. Sorianello, M. Pantouvaki, K. Watanabe, T. Taniguchi, D. V. Thourhout, M. Romagnoli, F. H. L. Koppens. 2D-3D integration of hexagonal boron nitride and a high-k dielectric for ultrafast graphene-based electro-absorption modulators. Nat. Commun., 12, 1070(2021).

    [210] A. Kuzmina, M. Parzefall, P. Back, T. Taniguchi, K. Watanabe, A. Jain, L. Novotny. Resonant light emission from graphene/hexagonal boron nitride/graphene tunnel junctions. Nano Lett., 21, 8332(2021).

    [211] X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, F. Wang. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol., 9, 682(2014).

    [212] M. S. Choi, B. K. Cheong, C. H. Ra, S. Lee, J. H. Bae, S. Lee, G. D. Lee, C. W. Yang, J. Hone, W. J. Yoo. Electrically driven reversible phase changes in layered In2Se3 crystalline film. Adv. Mater., 29, 1703568(2017).

    [213] T. Li, Y. Wang, W. Li, D. Mao, C. J. Benmore, I. Evangelista, H. Xing, Q. Li, F. Wang, G. Sivaraman, A. Janotti, S. Law, T. Gu. Structural phase transitions between layered indium selenide for integrated photonic memory. Adv. Mater., 34, 2108261(2022).

    [214] P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, Q. Bao. Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers. ACS Appl. Mater. Interfaces, 9, 12759(2017).

    [215] H. Lu, Y. Liu, P. Ahlawat, A. Mishra, W. R. Tress, F. T. Eickemeyer, Y. Yang, F. Fu, Z. Wang, C. E. Avalos, B. I. Carlsen, A. Agarwalla, X. Zhang, X. Li, Y. Zhan, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, L. Zheng, A. Hagfeldt, M. Gratzel. Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science, 370, eabb8985(2020).

    [216] P. J. Cegielski, A. L. Giesecke, S. Neutzner, C. Porschatis, M. Gandini, D. Schall, C. A. R. Perini, J. Bolten, S. Suckow, S. Kataria, B. Chmielak, T. Wahlbrink, A. Petrozza, M. C. Lemme. Monolithically integrated perovskite semiconductor lasers on silicon photonic chips by scalable top-down fabrication. Nano Lett., 18, 6915(2018).

    [217] A. Ren, H. Wang, L. Dai, J. Xia, X. Bai, E. Butler-Caddle, J. A. Smith, H. Lai, J. Ye, X. Li, S. Zhan, C. Yao, Z. Li, M. Tang, X. Liu, J. Bi, B. Li, S. Kai, R. Chen, H. Yan, J. Hong, L. Yuan, I. P. Marko, A. Wonfor, F. Fu, S. A. Hindmarsh, A. M. Sanchez, J. Lloyd-Hughes, S. J. Sweeney, A. Rao, N. C. Greenham, J. Wu, Y. Li, Q. Cheng, R. H. Friend, R. V. Penty, I. H. White, H. J. Snaith, W. Zhang. High-bandwidth perovskite photonic sources on silicon. Nat. Photonics, 17, 798(2023).

    [218] H. Kim, Z. Wang, H. N. Alshareef. MXetronics: electronic and photonic applications of MXenes. Nano Energy, 60, 179(2019).

    [219] J. Li, C. Wang, B. Zhang, Z. Wang, W. Yu, Y. Chen, X. Liu, Z. Guo, H. Zhang. Artificial carbon graphdiyne: status and challenges in nonlinear photonic and optoelectronic applications. ACS Appl. Mater. Interfaces, 12, 49281(2020).

    [220] Y. Zhao, P. Guo, X. Li, Z. Jin. Ultrafast photonics application of graphdiyne in the optical communication region. Carbon, 149, 336(2019).

    [221] Y. Yao, X. Xia, Z. Cheng, K. Wei, X. Jiang, J. Dong, H. Zhang. All-optical modulator using MXene inkjet-printed microring resonator. IEEE J. Sel. Top. Quantum Electron., 26, 5900306(2020).

    [222] A. Hazan, B. Ratzker, D. Zhang, A. Katiyi, M. Sokol, Y. Gogotsi, A. Karabchevsky. MXene-nanoflakes-enabled all-optical nonlinear activation function for on-chip photonic deep neural networks. Adv. Mater., 35, 2210216(2023).

    [223] Y. Huang, Y.-H. Pan, R. Yang, L. H. Bao, L. Meng, H. L. Luo, Y. Q. Cai, G. D. Liu, W. J. Zhao, Z. Zhou, L. M. Wu, Z. L. Zhu, M. Huang, L. W. Liu, L. Liu, P. Cheng, K. H. Wu, S. B. Tian, C. Z. Gu, Y. G. Shi, Y. F. Guo, Z. G. Cheng, J. P. Hu, L. Zhao, G. H. Yang, E. Sutter, P. Sutter, Y. L. Wang, W. Ji, X. J. Zhou, H. J. Gao. Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun., 11, 2453(2020).

    [224] E. Gao, S.-Z. Lin, Z. Qin, M. J. Buehler, X.-Q. Feng, Z. Xu. Mechanical exfoliation of two-dimensional materials. J. Mech. Phys. Solids, 115, 248(2018).

    [225] J.-Y. Moon, M. Kim, S.-I. Kim, S. Xu, J. H. Choi, D. Whang, K. Watanabe, T. Taniguchi, D. S. Park, J. Seo, S. H. Cho, S. K. Son, J. H. Lee. Layer-engineered large-area exfoliation of graphene. Sci. Adv., 6, eabc6601(2020).

    [226] J. Shim, S.-H. Bae, W. Kong, D. Lee, K. Qiao, D. Nezich, Y. J. Park, R. Zhao, S. Sundaram, X. Li, H. Yeon, C. Choi, H. Kum, R. Yue, G. Zhou, Y. Ou, K. Lee, J. Moodera, X. Zhao, J. H. Ahn, C. Hinkle, A. Ougazzaden, J. Kim. Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials. Science, 362, 665(2018).

    [227] F. Liu, W. Wu, Y. Bai, S. H. Chae, Q. Li, J. Wang, J. Hone, X. Y. Zhu. Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices. Science, 367, 903(2020).

    [228] V. Nicolosi, M. Chhowalla, M. G. Kanatzidis, M. S. Strano, J. N. Coleman. Liquid exfoliation of layered materials. Science, 340, 1226419(2013).

    [229] J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H. Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, V. Nicolosi. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 331, 568(2011).

    [230] C. Huo, Z. Yan, X. Song, H. Zeng. 2D materials via liquid exfoliation: a review on fabrication and applications. Sci. Bull., 60, 1994(2015).

    [231] F. Withers, H. Yang, L. Britnell, A. P. Rooney, E. Lewis, A. Felten, C. R. Woods, V. Sanchez Romaguera, T. Georgiou, A. Eckmann, Y. J. Kim, S. G. Yeates, S. J. Haigh, A. K. Geim, K. S. Novoselov, C. Casiraghi. Heterostructures produced from nanosheet-based inks. Nano Lett., 14, 3987(2014).

    [232] A. G. Kelly, D. Finn, A. Harvey, T. Hallam, J. N. Coleman. All-printed capacitors from graphene-BN-graphene nanosheet heterostructures. Appl. Phys. Lett., 109, 023107(2016).

    [233] T. Carey, S. Cacovich, G. Divitini, J. Ren, A. Mansouri, J. M. Kim, C. Wang, C. Ducati, R. Sordan, F. Torrisi. Fully inkjet-printed two-dimensional material field-effect heterojunctions for wearable and textile electronics. Nat. Commun., 8, 1202(2017).

    [234] X. Jiang, W. Li, T. Hai, R. Yue, Z. Chen, C. Lao, Y. Ge, G. Xie, Q. Wen, H. Zhang. Inkjet-printed MXene micro-scale devices for integrated broadband ultrafast photonics. npj 2D Mater. Appl., 3, 34(2019).

    [235] T. H. Ly, M.-H. Chiu, M.-Y. Li, J. Zhao, D. J. Perello, M. O. Cichocka, H. M. Oh, S. H. Chae, H. Y. Jeong, F. Yao, L. J. Li, Y. H. Lee. Observing grain boundaries in CVD-grown monolayer transition metal dichalcogenides. ACS Nano, 8, 11401(2014).

    [236] A. T. Hoang, K. Qu, X. Chen, J. H. Ahn. Large-area synthesis of transition metal dichalcogenides via CVD and solution-based approaches and their device applications. Nanoscale, 13, 615(2021).

    [237] A. Bansal, M. Hilse, B. Huet, K. Wang, A. Kozhakhmetov, J. H. Kim, S. Bachu, N. Alem, R. Collazo, J. A. Robinson, R. Engel-Herbert, J. M. Redwing. Substrate modification during chemical vapor deposition of hBN on sapphire. ACS Appl. Mater. Interfaces, 13, 54516(2021).

    [238] K. Zhang, Y. Feng, F. Wang, Z. Yang, J. Wang. Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications. J. Mater. Chem. C Mater., 5, 11992(2017).

    [239] K. Chen, X. Zhou, X. Cheng, R. Qiao, Y. Cheng, C. Liu, Y. Xie, W. Yu, F. Yao, Z. Sun, F. Wang, K. Liu, Z. Liu. Graphene photonic crystal fibre with strong and tunable light–matter interaction. Nat. Photonics, 13, 754(2019).

    [240] Q. Wu, W. Wongwiriyapan, J.-H. Park, S. Park, S. J. Jung, T. Jeong, S. Lee, Y. H. Lee, Y. J. Song. In situ chemical vapor deposition of graphene and hexagonal boron nitride heterostructures. Curr. Appl. Phys., 16, 1175(2016).

    [241] Z. Shi, R. Yang, L. Zhang, Y. Wang, D. Liu, D. Shi, E. Wang, G. Zhang. Patterning graphene with zigzag edges by self-aligned anisotropic etching. Adv. Mater., 23, 3061(2011).

    [242] J. Song, F.-Y. Kam, R.-Q. Png, W. L. Seah, J. M. Zhuo, G. K. Lim, P. K. Ho, L. L. Chua. A general method for transferring graphene onto soft surfaces. Nat. Nanotechnol., 8, 356(2013).

    [243] L. Dong, H. Al-Mumen, F. Rao, W. Li. Singular sheet etching of graphene with oxygen plasma. Nanomicro Lett., 6, 116(2014).

    [244] J. Wu, H. Li, Z. Yin, H. Li, J. Liu, X. Cao, Q. Zhang, H. Zhang. Layer thinning and etching of mechanically exfoliated MoS2 nanosheets by thermal annealing in air. Small, 9, 3314(2013).

    [245] N. Clark, L. Nguyen, M. J. Hamer, F. Schedin, E. A. Lewis, E. Prestat, A. Garner, Y. Cao, M. Zhu, R. Kashtiban, J. Sloan, D. Kepaptsoglou, R. V. Gorbachev, S. J. Haigh. Scalable patterning of encapsulated black phosphorus. Nano Lett., 18, 5373(2018).

    [246] Z. Wu, Y. Lyu, Y. Zhang, R. Ding, B. Zheng, Z. Yang, S. P. Lau, X. H. Chen, J. Hao. Large-scale growth of few-layer two-dimensional black phosphorus. Nat. Mater., 20, 1203(2021).

    [247] X. Gao, L. Zheng, F. Luo, J. Qian, J. Wang, M. Yan, W. Wang, Q. Wu, J. Tang, Y. Cao, C. Tan, J. Tang, M. Zhu, Y. Wang, Y. Li, L. Sun, G. Gao, J. Yin, L. Lin, Z. Liu, S. Qin, H. Peng. Integrated wafer-scale ultra-flat graphene by gradient surface energy modulation. Nat. Commun., 13, 5410(2022).

    [248] X. Li, J. Yang, H. Sun, L. Huang, H. Li, J. Shi. Controlled synthesis and accurate doping of wafer-scale two-dimensional semiconducting transition metal dichalcogenides. Adv. Mater., 2305115(2023).

    [249] S. Fukamachi, P. Solís-Fernández, K. Kawahara, D. Tanaka, T. Otake, Y.-C. Lin, K. Suenaga, H. Ago. Large-area synthesis and transfer of multilayer hexagonal boron nitride for enhanced graphene device arrays. Nat. Electron., 6, 126(2023).

    [250] H. Tan, Z. Ni, W. Peng, S. Du, X. Liu, S. Zhao, W. Li, Z. Ye, M. Xu, Y. Xu, X. Pi, D. Yang. Broadband optoelectronic synaptic devices based on silicon nanocrystals for neuromorphic computing. Nano Energy, 52, 422(2018).

    [251] Z. He, H. Guan, X. Liang, J. Chen, M. Xie, K. Luo, R. An, L. Ma, F. Ma, T. Yang, H. Lu. Broadband, polarization-sensitive, and self-powered high-performance photodetection of hetero-integrated MoS2 on lithium niobate. Research, 6, 0199(2023).

    Hua Tan, Lei Du, Fenghe Yang, Wei Chu, Yiqiang Zhan, "Two-dimensional materials in photonic integrated circuits: recent developments and future perspectives [Invited]," Chin. Opt. Lett. 21, 110007 (2023)
    Download Citation