• Chinese Optics Letters
  • Vol. 23, Issue 6, 060604 (2025)
Yang Xiao, Jiakang Ai, Xiangyang Chen, Xugao Cui**, and Pengfei Tian*
Author Affiliations
  • Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China
  • show less
    DOI: 10.3788/COL202523.060604 Cite this Article Set citation alerts
    Yang Xiao, Jiakang Ai, Xiangyang Chen, Xugao Cui, Pengfei Tian, "30 Gbps visible light communication in rainy environments based on laser diodes," Chin. Opt. Lett. 23, 060604 (2025) Copy Citation Text show less
    References

    [1] S. Zhu, X. Chen, X. Liu et al. Recent progress in and perspectives of underwater wireless optical communication. Prog. Quantum Electron., 73, 100274(2020).

    [2] L. E. M. Matheus, A. B. Vieira, L. F. M. Vieira et al. Visible light communication: concepts, applications and challenges. IEEE Commun. Surv. Tutorials, 21, 3204(2019).

    [3] M. Meucci, M. Seminara, T. Nawaz et al. Bidirectional vehicle-to-vehicle communication system based on VLC: Outdoor tests and performance analysis. IEEE Trans. Intell. Transp. Syst., 23, 11465(2021).

    [4] M. S. Amjad, C. Tebruegge, A. Memedi et al. Towards an IEEE 802.11 compliant system for outdoor vehicular visible light communications. IEEE Trans. Veh. Technol., 70, 5749(2021).

    [5] A. R. Ndjiongue, H. C. Ferreira. An overview of outdoor visible light communications. Trans. Emerg. Telecommun. Technol., 29, e3448(2018).

    [6] M. Elamassie, M. Karbalayghareh, F. Miramirkhani et al. Effect of fog and rain on the performance of vehicular visible light communications. 2018 IEEE 87th Vehicular Technology Conference (VTC Spring)(2018).

    [7] T. Ariatama, A. Fahmi, B. Pamukti. Impact of rain on performance of visible light communication system in vehicle-to-vehicle communication. 2022 5th International Conference on Information and Communications Technology (ICOIACT)(2022).

    [8] L. Danys, R. Martinek, Z. Slanina et al. The impact of fog on performance of visible light communication. Proc. SPIE, 11176, 245(2019).

    [9] R. W. Zaki, H. A. Fayed, A. Abd El Aziz et al. Outdoor visible light communication in intelligent transportation systems: impact of snow and rain. Appl. Sci., 9, 5453(2019).

    [10] L.-Y. Wei, C. W. Hsu, C. W. Chow et al. 20.231 Gbit/s tricolor red/green/blue laser diode based bidirectional signal remodulation visible-light communication system. Photonics Res., 6, 422(2018).

    [11] L.-Y. Wei, C. W. Chow, G. H. Chen et al. Tricolor visible-light laser diodes based visible light communication operated at 40.665 Gbit/s and 2 m free-space transmission. Opt. Express, 27, 25072(2019).

    [12] G. Singh, A. Srivastava, V. A. Bohara. Impact of weather conditions and interference on the performance of VLC based V2V communication. 21st International Conference on Transparent Optical Networks (ICTON)(2019).

    [13] Y. H. Kim, W. A. Cahyadi, Y. H. Chung. Experimental demonstration of VLC-based vehicle-to-vehicle communications under fog conditions. IEEE Photonics J., 7, 1(2015).

    [14] S. H. Yu, O. Shih, H. M. Tsai et al. Smart automotive lighting for vehicle safety. IEEE Commun. Mag., 51, 50(2013).

    [15] C. T. Tsai, C. H. Cheng, H. C. Kuo et al. Toward high-speed visible laser lighting based optical wireless communications. Prog. Quantum Electron., 67, 100225(2019).

    [16] X. Liu, S. Yi, X. Zhou et al. Laser-based white-light source for high-speed underwater wireless optical communication and high-efficiency underwater solid-state lighting. Opt. Express, 26, 19259(2018).

    [17] P. Singh, M. L. Singh. Experimental determination and comparison of rain attenuation in free space optic link operating at 532 nm and 655 nm wavelength. Optik, 125, 4599(2014).

    [18] V. D. Kuptsov, S. I. Ivanov, A. A. Fedotov et al. Rain attenuation in millimeter wave, centimeter wave and visible light ranges. IOP Conference Series: Materials Science and Engineering, 1047, 012023(2021).

    [19] P. Qiu, G. Cui, Z. Qian et al. 4.0 Gbps visible light communication in a foggy environment based on a blue laser diode. Opt. Express, 29, 14163(2021).

    [20] C. Maetzler. Drop-size distributions and Mie computations for rain(2002).

    [21] M. Hulea, X. Tang, Z. Ghassemlooy et al. A review on effects of the atmospheric turbulence on laser beam propagation—an analytic approach. 2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)(2016).

    [22] A. Arockia Bazil Raj, S. Padmavathi. Statistical analysis of accurate prediction of local atmospheric optical attenuation with a new model according to weather together with beam wandering compensation system: a season-wise experimental investigation. J. Mod. Opt., 63, 1286(2016).

    [23] M. Grover, P. Singh, P. Kaur. Mitigation of scintillation effects in WDM FSO system using multibeam technique. J. Telecommun. Inf. Technol., 2, 69(2017).

    [24] A. A. Farid, S. Hranilovic. Outage capacity optimization for free-space optical links with pointing errors. J. Lightwave Technol., 25, 1702(2007).

    [25] J. Campello. Practical bit loading for DMT. 1999 IEEE International Conference on Communications (Cat. No. 99CH36311), 2, 801(1999).

    [26] Z. Jin, L. Yan, S. Zhu et al. 10-Gbps visible light communication in a 10-m free space based on violet series-biased micro-LED array and distance adaptive pre-equalization. Opt. Lett., 48, 2026(2023).

    [27] F. Hu, S. Chen, G. Li et al. Si-substrate LEDs with multiple superlattice interlayers for beyond 24 Gbps visible light communication. Photonics Res., 9, 1581(2021).

    Yang Xiao, Jiakang Ai, Xiangyang Chen, Xugao Cui, Pengfei Tian, "30 Gbps visible light communication in rainy environments based on laser diodes," Chin. Opt. Lett. 23, 060604 (2025)
    Download Citation