[1] S. Zhu, X. Chen, X. Liu et al. Recent progress in and perspectives of underwater wireless optical communication. Prog. Quantum Electron., 73, 100274(2020).
[2] L. E. M. Matheus, A. B. Vieira, L. F. M. Vieira et al. Visible light communication: concepts, applications and challenges. IEEE Commun. Surv. Tutorials, 21, 3204(2019).
[3] M. Meucci, M. Seminara, T. Nawaz et al. Bidirectional vehicle-to-vehicle communication system based on VLC: Outdoor tests and performance analysis. IEEE Trans. Intell. Transp. Syst., 23, 11465(2021).
[4] M. S. Amjad, C. Tebruegge, A. Memedi et al. Towards an IEEE 802.11 compliant system for outdoor vehicular visible light communications. IEEE Trans. Veh. Technol., 70, 5749(2021).
[5] A. R. Ndjiongue, H. C. Ferreira. An overview of outdoor visible light communications. Trans. Emerg. Telecommun. Technol., 29, e3448(2018).
[6] M. Elamassie, M. Karbalayghareh, F. Miramirkhani et al. Effect of fog and rain on the performance of vehicular visible light communications. 2018 IEEE 87th Vehicular Technology Conference (VTC Spring)(2018).
[7] T. Ariatama, A. Fahmi, B. Pamukti. Impact of rain on performance of visible light communication system in vehicle-to-vehicle communication. 2022 5th International Conference on Information and Communications Technology (ICOIACT)(2022).
[8] L. Danys, R. Martinek, Z. Slanina et al. The impact of fog on performance of visible light communication. Proc. SPIE, 11176, 245(2019).
[9] R. W. Zaki, H. A. Fayed, A. Abd El Aziz et al. Outdoor visible light communication in intelligent transportation systems: impact of snow and rain. Appl. Sci., 9, 5453(2019).
[10] L.-Y. Wei, C. W. Hsu, C. W. Chow et al. 20.231 Gbit/s tricolor red/green/blue laser diode based bidirectional signal remodulation visible-light communication system. Photonics Res., 6, 422(2018).
[11] L.-Y. Wei, C. W. Chow, G. H. Chen et al. Tricolor visible-light laser diodes based visible light communication operated at 40.665 Gbit/s and 2 m free-space transmission. Opt. Express, 27, 25072(2019).
[12] G. Singh, A. Srivastava, V. A. Bohara. Impact of weather conditions and interference on the performance of VLC based V2V communication. 21st International Conference on Transparent Optical Networks (ICTON)(2019).
[13] Y. H. Kim, W. A. Cahyadi, Y. H. Chung. Experimental demonstration of VLC-based vehicle-to-vehicle communications under fog conditions. IEEE Photonics J., 7, 1(2015).
[14] S. H. Yu, O. Shih, H. M. Tsai et al. Smart automotive lighting for vehicle safety. IEEE Commun. Mag., 51, 50(2013).
[15] C. T. Tsai, C. H. Cheng, H. C. Kuo et al. Toward high-speed visible laser lighting based optical wireless communications. Prog. Quantum Electron., 67, 100225(2019).
[16] X. Liu, S. Yi, X. Zhou et al. Laser-based white-light source for high-speed underwater wireless optical communication and high-efficiency underwater solid-state lighting. Opt. Express, 26, 19259(2018).
[17] P. Singh, M. L. Singh. Experimental determination and comparison of rain attenuation in free space optic link operating at 532 nm and 655 nm wavelength. Optik, 125, 4599(2014).
[18] V. D. Kuptsov, S. I. Ivanov, A. A. Fedotov et al. Rain attenuation in millimeter wave, centimeter wave and visible light ranges. IOP Conference Series: Materials Science and Engineering, 1047, 012023(2021).
[19] P. Qiu, G. Cui, Z. Qian et al. 4.0 Gbps visible light communication in a foggy environment based on a blue laser diode. Opt. Express, 29, 14163(2021).
[20] C. Maetzler. Drop-size distributions and Mie computations for rain(2002).
[21] M. Hulea, X. Tang, Z. Ghassemlooy et al. A review on effects of the atmospheric turbulence on laser beam propagation—an analytic approach. 2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)(2016).
[22] A. Arockia Bazil Raj, S. Padmavathi. Statistical analysis of accurate prediction of local atmospheric optical attenuation with a new model according to weather together with beam wandering compensation system: a season-wise experimental investigation. J. Mod. Opt., 63, 1286(2016).
[23] M. Grover, P. Singh, P. Kaur. Mitigation of scintillation effects in WDM FSO system using multibeam technique. J. Telecommun. Inf. Technol., 2, 69(2017).
[24] A. A. Farid, S. Hranilovic. Outage capacity optimization for free-space optical links with pointing errors. J. Lightwave Technol., 25, 1702(2007).
[25] J. Campello. Practical bit loading for DMT. 1999 IEEE International Conference on Communications (Cat. No. 99CH36311), 2, 801(1999).
[26] Z. Jin, L. Yan, S. Zhu et al. 10-Gbps visible light communication in a 10-m free space based on violet series-biased micro-LED array and distance adaptive pre-equalization. Opt. Lett., 48, 2026(2023).
[27] F. Hu, S. Chen, G. Li et al. Si-substrate LEDs with multiple superlattice interlayers for beyond 24 Gbps visible light communication. Photonics Res., 9, 1581(2021).