[1] ZHANG X, LIU X, ZENG Y, et al. Oxygen defects in promoting the electrochemical performance of metal oxides for supercapacitors: Recent advances and challenges[J]. Small Methods, 2020, 4(6): 1900823.
[2] AN C, ZHANG Y, GUO H, et al. Metal oxide-based supercapacitors: Progress and prospectives[J]. Nanoscale Adv, 2019, 1(12): 4644.
[3] MA Y, XIE X, YANG W, et al. Recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors[J]. Adv Compos Hybrid Mater, 2021, 4(4): 906.
[4] LU I T, BERNARDI M. Using defects to store energy in materials-a computational study[J]. Sci Rep, 2017, 7(1): 1-8.
[5] LIU H, FU H, LIU Y, et al. Synthesis, characterization and utilization of oxygen vacancy contained metal oxide semiconductors for energy and environmental catalysis[J]. Chemosphere, 2021, 272: 129534.
[6] WANG L, XIE X, DINH K N, et al. Synthesis, characterizations, and utilization of oxygen-deficient metal oxides for lithium/sodium-ion batteries and supercapacitors[J]. Coord Chem Rev, 2019, 397: 138-167.
[7] LEI F, SUN Y, LIU K, et al. Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting[J]. J Am Chem Soc, 2014, 136(19): 6826-6829.
[8] FENG H, XU Z, REN L, et al. Activating titania for efficient electrocatalysis by vacancy engineering[J]. ACS Catal, 2018, 8(5): 4288-4293.
[9] SUSANTI D, TSAI D S, HUANG Y S, et al. Structures and electrochemical capacitive properties of RuO2 vertical nanorods encased in hydrous RuO2[J]. J Phys Chem C, 2007, 111(26): 9530.
[10] LU X, WANG G, ZHAI T, et al. Hydrogenated TiO2 nanotube arrays for supercapacitors[J]. Nano Lett, 2012, 12(3): 1690.
[11] WANG G, SHEN P, LUO Y, et al. A vacancy engineered MnO2-x electrocatalyst promotes electroreduction of nitrate to ammonia[J]. Dalton Trans, 2022, 51(24): 9206.
[12] ZHENG M, XING C, ZHANG W, et al. Hydrogenated hematite nanoplates for enhanced photocatalytic and photo-fenton oxidation of organic compounds[J]. Inorg Chem Commun, 2020, 119: 108040.
[13] CHENG S, ZHANG C, PAN X, et al. Electrically driven hydrogenation of MoO3 nanoparticles in protonic acid for oxidative degradation of micropollutants[J]. ACS Appl Nano Mater, 2022, 5(5): 6832.
[14] MOKHTARIFAR M, NGUYEN D T, SAKAR M, et al. Mechanistic insights into photogenerated electrons store-and-discharge in hydrogenated glucose template synthesized Pt: TiO2/WO3 photocatalyst for the round-the-clock decomposition of methanol[J]. Mater Res Bull, 2021, 137: 111203.
[15] CHANG K H, HU C C, CHOU C Y. Textural and capacitive characteristics of hydrothermally derived RuO2·xH2O nanocrystallites: Independent control of crystal size and water content[J]. Chem Mater, 2007, 19(8): 2112.
[16] SALARI M, KONSTANTINOV K, LIU H K. Enhancement of the capacitance in TiO2 nanotubes through controlled introduction of oxygen vacancies[J]. J Mater Chem, 2011, 21(13): 5128.
[17] LU X, ZENG Y, YU M, et al. Oxygen‐deficient hematite nanorods as high‐performance and novel negative electrodes for flexible asymmetric supercapacitors[J]. Adv Mater, 2014, 26(19): 3148.
[18] LIU R, MA L, NIU G, et al. Oxygen‐deficient bismuth oxide/graphene of ultrahigh capacitance as advanced flexible anode for asymmetric supercapacitors[J]. Adv Funct Mater, 2017, 27(29): 1701635.
[19] ZHAI T, SUN S, LIU X, et al. Achieving insertion‐like capacity at ultrahigh rate via tunable surface pseudocapacitance[J]. Adv Mater, 2018, 30(12): 1706640.
[20] LI Y, ZHANG Y, LI Y, et al. Unveiling the dynamic capacitive storage mechanism of Co3O4@NiCo2O4 hybrid nanoelectrodes for supercapacitor applications[J]. Electrochim Acta, 2014, 145: 177.
[21] GUO W, YU C, LI S, et al. A universal converse voltage process for triggering transition metal hybrids in situ phase restruction toward ultrahigh‐rate supercapacitors[J]. Adv Mater, 2019, 31(28): 1901241.
[22] JAMPANI P H, VELIKOKHATNYI O, KADAKIA K, et al. High energy density titanium doped-vanadium oxide-vertically aligned CNT composite electrodes for supercapacitor applications[J]. J Mater Chem A, 2015, 3(16): 8413.
[23] FENG Y, LIU W, WANG Y, et al. Oxygen vacancies enhance supercapacitive performance of CuCo2O4 in high-energy-density asymmetric supercapacitors[J]. J Power Sources, 2020, 458: 228005.
[24] ZHANG A, GAO R, HU L, et al. Rich bulk oxygen vacancies- engineered MnO2 with enhanced charge transfer kinetics for supercapacitor[J]. Chem Eng J, 2021, 417: 129186.
[25] MELSHEIMER J, ZIEGLER D. The oxygen electrode reaction in acid solutions on RuO2 electrodes prepared by the thermal decomposition method[J]. Thin Solid Films, 1988, 163: 301.
[26] CHENG F, ZHANG T, ZHANG Y, et al. Enhancing electrocatalytic oxygen reduction on MnO2 with vacancies[J]. Angew Chem Int Ed, 2013, 52(9): 2474.
[27] QIU W, XIAO H, GAO H. Defect engineering tuning of MnO2 nanorods bifunctional cathode for flexible asymmetric supercapacitors and microbial fuel cells[J]. J Power Sources, 2021, 491: 229583.
[28] CUI P, ZHANG Y, CAO Z, et al. Plasma-assisted lattice oxygen vacancies engineering recipe for high-performing supercapacitors in a model of birnessite-MnO2[J]. Chem Eng J, 2021, 412: 128676.
[29] ZENG W, QUAN H, MENG J, et al. Nitrogen plasma activation of cactus-like MnO2 grown on carbon cloth for high-mass loading asymmetric supercapacitors[J]. Appl Surf Sci, 2022, 572: 151323.
[32] YANG J, XIAO X, CHEN P, et al. Creating oxygen-vacancies in MoO3-x nanobelts toward high volumetric energy-density asymmetric supercapacitors with long lifespan[J]. Nano Energy, 2019, 58: 455.
[33] YANG S, LIU Y, HAO Y, et al. Oxygen‐vacancy abundant ultrafine Co3O4/graphene composites for high‐rate supercapacitor electrodes[J]. Adv Sci, 2018, 5(4): 1700659.
[34] MA Q, CUI F, ZHANG J, et al. Surface engineering of Co3O4 nanoribbons forming abundant oxygen-vacancy for advanced supercapacitor[J]. Appl Surf Sci, 2022, 578: 152001.
[35] ENSAFI A A, MOOSAVIFARD S E, REZAEI B, et al. Engineering onion-like nanoporous CuCo2O4 hollow spheres derived from bimetal-organic frameworks for high-performance asymmetric supercapacitors[J]. J Mater Chem A, 2018, 6(22): 10497.
[36] WANG X, LI Y, JIN T, et al. Electrospun thin-walled CuCo2O4@C nanotubes as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries[J]. Nano Lett, 2017, 17(12): 7989.
[37] LIU S, SAN HUI K, HUI K N, et al. Vertically stacked bilayer CuCo2O4/MnCo2O4 heterostructures on functionalized graphite paper for high-performance electrochemical capacitors[J]. J Mater Chem A, 2016, 4(21): 8061.
[38] LI P, RUAN C, XU J, et al. Supercapacitive performance of CoMoO4 with oxygen vacancy porous nanosheet[J]. Electrochim Acta, 2020, 330: 135334.
[39] SIVAKUMAR P, RAJ C J, KULANDAIVEL L, et al. Impact of oxygen‐defects induced electrochemical properties of three‐dimensional flower‐like CoMoO4 nanoarchitecture for supercapacitor applications[J]. Int J Energy Res, 2022, 46(12): 17043.
[40] LIU S, YIN Y, NI D, et al. Phosphorous-containing oxygen-deficient cobalt molybdate as an advanced electrode material for supercapacitors[J]. Energy Storage Mater, 2019, 19: 186.
[41] CAI Z, BI Y, HU E, et al. Single‐crystalline ultrathin Co3O4 nanosheets with massive vacancy defects for enhanced electrocatalysis[J]. Adv Energy Mater, 2018, 8(3): 1701694.
[42] LIU G, WANG B, LIU T, et al. 3D self-supported hierarchical core/shell structured MnCo2O4@CoS arrays for high-energy supercapacitors[J]. J Mater Chem A, 2018, 6(4): 1822.
[43] LIANG K, MARCUS K, YANG Z, et al. Freestanding NiFe oxyfluoride holey film with ultrahigh volumetric capacitance for flexible asymmetric supercapacitors[J]. Small, 2018, 14(3): 1702295.
[44] LIU S, YIN Y, NI D, et al. New insight into the effect of fluorine doping and oxygen vacancies on electrochemical performance of Co2MnO4 for flexible quasi-solid-state asymmetric supercapacitors[J]. Energy Storage Mater, 2019, 22: 384.
[45] YANG X, XIANG C, ZOU Y, et al. Low-temperature synthesis of sea urchin-like Co-Ni oxide on graphene oxide for supercapacitor electrodes[J]. J Mater Sci Technol, 2020, 55: 223.
[46] WANG S, LI L, HE W, et al. Oxygen vacancy modulation of bimetallic oxynitride anodes toward advanced li‐ion capacitors[J]. Adv Funct Mater, 2020, 30(27): 2000350.
[47] MAO X, WANG Y, XIANG C, et al. Core-shell structured CuCo2S4@CoMoO4 nanorods for advanced electrode materials[J]. J Alloys Compd, 2020, 844: 156133.
[48] DU J, ZHOU G, ZHANG H, et al. Ultrathin porous NiCo2O4 nanosheet arrays on flexible carbon fabric for high-performance supercapacitors[J]. ACS Appl Mater Interfaces, 2013, 5(15): 7405.
[49] KAMBLE G P, KASHALE A A, RASAL A S, et al. Marigold micro-flower like NiCo2O4 grown on flexible stainless-steel mesh as an electrode for supercapacitors[J]. RSC Adv, 2021, 11(6): 3666.
[50] ZHANG Y, TAO L, XIE C, et al. Defect engineering on electrode materials for rechargeable batteries[J]. Adv Mater, 2020, 32(7): 1905923.
[51] ZHAO T, LIU C, YI F, et al. Hollow N-doped carbon@O-vacancies NiCo2O4 nanocages with a built-in electric field as high-performance cathodes for hybrid supercapacitor[J]. Electrochim Acta, 2020, 364: 137260.
[52] LUO X, ZHOU Q, GUO M, et al. Multiple structural defects in poor-crystalline In-doped NiCo2O4 nanoneedles synergistically and remarkably enhance supercapacitive performance[J]. Chem Eng J, 2022, 431: 134220.
[53] WEI S, WAN C, ZHANG L, et al. N-doped and oxygen vacancy-rich NiCo2O4 nanograss for supercapacitor electrode[J]. Chem Eng J, 2022, 429: 132242.