• Photonics Research
  • Vol. 12, Issue 6, 1167 (2024)
Xiaoying He1,2,*, Minghao Xu1, Shilin Liu1, Kun Wang1..., Bowen Cao1, Lan Rao1 and Xiangjun Xin1|Show fewer author(s)
Author Affiliations
  • 1School of Electronic Engineering and Beijing Key Laboratory of Space-Ground Interconnection and Convergence, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • 2Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • show less
    DOI: 10.1364/PRJ.516207 Cite this Article Set citation alerts
    Xiaoying He, Minghao Xu, Shilin Liu, Kun Wang, Bowen Cao, Lan Rao, Xiangjun Xin, "Side ionic-gated perovskite/graphene heterojunction synaptic transistor with bipolar photoresponse for neuromorphic computing," Photonics Res. 12, 1167 (2024) Copy Citation Text show less
    References

    [1] C. Mead. Neuromorphic electronic systems. Proc. IEEE, 78, 1629-1636(1990).

    [2] J. Misra, I. Saha. Artificial neural networks in hardware: a survey of two decades of progress. Neurocomputing, 74, 239-255(2010).

    [3] J. J. Hopfield. Artificial neural networks. IEEE Circuits Devices Mag., 4, 3-10(1998).

    [4] K. Noda, Y. Yamaguchi, K. Nakadai. Audio-visual speech recognition using deep learning. Appl. Intell., 42, 722-737(2015).

    [5] E. Moen, D. Bannon, T. Kudo. Deep learning for cellular image analysis. Nat. Methods, 16, 1233-1246(2019).

    [6] J. D. Kendall, S. Kumar. The building blocks of a brain-inspired computer. Appl. Phys. Rev., 7, 011305(2020).

    [7] C. D. Schuman, T. E. Potok, R. M. Patton. A survey of neuromorphic computing and neural networks in hardware. arXiv(2017).

    [8] G. Cao, P. Meng, J. Chen. 2D material-based synaptic devices for neuromorphic computing. Adv. Funct. Mater., 31, 2005443(2021).

    [9] H. Shim, K. Sim, F. Ershad. Stretchable elastic synaptic transistors for neurologically integrated soft engineering systems. Sci. Adv., 5, eaax4961(2019).

    [10] S. Jiang, S. Nie, Y. He. Emerging synaptic devices: from two-terminal memristors to multiterminal neuromorphic transistors. Mater. Today Nano, 8, 100059(2019).

    [11] J. Li, Z. Shen, Y. Cao. Artificial synapses enabled neuromorphic computing: from blueprints to reality. Nano Energy, 103, 107744(2022).

    [12] J. Park, Y. Jang, J. Lee. Synaptic transistor based on In-Ga-Zn-O channel and trap layers with highly linear conductance modulation for neuromorphic computing. Adv. Electron. Mater., 6, 2201306(2023).

    [13] J. Sun, S. Oh, Y. Choi. Optoelectronic synapse based on IGZO-alkylated graphene oxide hybrid structure. Adv. Funct. Mater., 28, 1804397(2018).

    [14] J. Li, P. Dwivedi, K. S. Kumar. Growing perovskite quantum dots on carbon nanotubes for neuromorphic optoelectronic computing. Adv. Electron. Mater., 7, 2000535(2021).

    [15] J. Lao, W. Xu, C. Jiang. Artificial synapse based on organic–inorganic hybrid perovskite with electric and optical modulation. Adv. Electron. Mater., 7, 2100291(2021).

    [16] J. Jiang, W. Hu, D. Xie. 2D electric-double-layer phototransistor for photoelectronic and spatiotemporal hybrid neuromorphic integration. Nanoscale, 11, 1360-1369(2019).

    [17] B. Huang, N. Li, Q. Wang. Optoelectronic synapses based on MoS2 transistors for accurate image recognition. Adv. Mater. Interfaces, 9, 2201558(2022).

    [18] Z. Luo, T. Guo, C. Wang. Enhancing the efficiency of perovskite solar cells through interface engineering with MoS2 quantum dots. Nanomaterials, 12, 3079(2022).

    [19] D. Singh, R. Ahuja. Two-dimensional perovskite/HfS2 van der Waals heterostructure as an absorber material for photovoltaic applications. ACS Appl. Energy Mater., 5, 2300-2307(2022).

    [20] S. Liu, X. He, J. Su. A light-stimulus flexible synaptic transistor based on ion-gel side-gated graphene for neuromorphic computing. Adv. Photonics Res., 3, 2200174(2022).

    [21] J. Y. Chen, D. L. Yang, F. C. Jhuang. Ultrafast responsive and low-energy-consumption poly(3-hexylthiophene)/perovskite quantum dots composite film-based photonic synapse. Adv. Funct. Mater., 31, 2105911(2021).

    [22] E. Ercan, Y. C. Lin, W. C. Yang. Self-assembled nanostructures of quantum dot/conjugated polymer hybrids for photonic synaptic transistors with ultralow energy consumption and zero-gate bias. Adv. Funct. Mater., 32, 2107925(2022).

    [23] R. Li, Y. Dong, F. Qian. CsPbBr3/graphene nanowall artificial optoelectronic synapses for controllable perceptual learning. PhotoniX, 4, 4(2023).

    [24] K. P. Bera, G. Haider, Y. T. Huang. Graphene sandwich stable perovskite quantum-dot light-emissive ultrasensitive and ultrafast broadband vertical phototransistors. ACS Nano, 13, 12540-12552(2019).

    [25] Q. Zhu, B. Li, D. Yang. A flexible ultrasensitive optoelectronic sensor array for neuromorphic vision systems. Nat. Commun., 12, 1798(2021).

    [26] B. Pradhan, S. Das, J. Li. Ultrasensitive and ultrathin phototransistors and photonic synapses using perovskite quantum dots grown from graphene lattice. Sci. Adv., 6, eaay5225(2020).

    [27] Z. Wu, P. Shi, R. Xing. Quasi-two-dimensional α-molybdenum oxide thin film prepared by magnetron sputtering for neuromorphic computing. RSC Adv., 12, 17706-17714(2022).

    [28] R. Romero, M. C. López, D. Leinen. Electrical properties of the n-ZnO/c-Si heterojunction prepared by chemical spray pyrolysis. Mat. Sci. Eng. B, 110, 87-93(2004).

    [29] H. Y. Mao, F. Bussolotti, D. C. Qi. Mechanism of the Fermi level pinning at organic donor–acceptor heterojunction interfaces. Org. Electron., 12, 534-540(2004).

    Xiaoying He, Minghao Xu, Shilin Liu, Kun Wang, Bowen Cao, Lan Rao, Xiangjun Xin, "Side ionic-gated perovskite/graphene heterojunction synaptic transistor with bipolar photoresponse for neuromorphic computing," Photonics Res. 12, 1167 (2024)
    Download Citation