• Chinese Optics Letters
  • Vol. 23, Issue 6, 061901 (2025)
Boyu Xu1,2,3, Xiao Xiong4, Rui Niu1, Guangyuan Qu5..., Chunhua Dong1,2,3, Guang-Can Guo1,2,3 and Xifeng Ren1,2,3,*|Show fewer author(s)
Author Affiliations
  • 1CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
  • 2CAS Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
  • 3Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
  • 4State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
  • 5School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
  • show less
    DOI: 10.3788/COL202523.061901 Cite this Article Set citation alerts
    Boyu Xu, Xiao Xiong, Rui Niu, Guangyuan Qu, Chunhua Dong, Guang-Can Guo, Xifeng Ren, "Giant enhancement of second-harmonic generation from microcavity-integrated monolayer WS2," Chin. Opt. Lett. 23, 061901 (2025) Copy Citation Text show less
    References

    [1] H. R. Gutiérrez, N. Perea-López, A. L. Elías et al. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett., 13, 3447(2013).

    [2] P. Tonndorf, R. Schmidt, P. Böttger et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt. Express, 21, 4908(2013).

    [3] W. Shi, M.-L. Lin, Q.-H. Tan et al. Raman and photoluminescence spectra of two-dimensional nanocrystallites of monolayer WS2 and WSe2. 2D Mater., 3, 025016(2016).

    [4] X. Qi, T. W. Lo, D. Liu et al. Effects of gap thickness and emitter location on the photoluminescence enhancement of monolayer MoS2 in a plasmonic nanoparticle-film coupled system. Nanophotonics, 9, 2097(2020).

    [5] K. F. Mak, J. Shan. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics, 10, 216(2016).

    [6] Q. H. Wang, K. Kalantar-Zadeh, A. Kis et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 7, 699(2012).

    [7] B. Guo, Q.-L. Xiao, S.-H. Wang et al. 2D layered materials: synthesis, nonlinear optical properties, and device applications. Laser Photon. Rev., 13, 1800327(2019).

    [8] C. Janisch, Y. Wang, D. Ma et al. Extraordinary second harmonic generation in tungsten disulfide monolayers. Sci. Rep., 4, 5530(2014).

    [9] Y. Li, Y. Rao, K. F. Mak et al. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Lett., 13, 3329(2013).

    [10] N. Kumar, S. Najmaei, Q. Cui et al. Second harmonic microscopy of monolayer MoS2. Phys. Rev. B, 87, 161403(2013).

    [11] M. Wang, D. Li, K. Liu et al. Nonlinear optical imaging, precise layer thinning, and phase engineering in MoTe2 with femtosecond laser. ACS Nano, 14, 11169(2020).

    [12] K. L. Seyler, J. R. Schaibley, P. Gong et al. Electrical control of second-harmonic generation in a WSe2 monolayer transistor. Nat. Nanotechnol., 10, 407(2015).

    [13] F. Yi, M. Ren, J. C. Reed et al. Optomechanical enhancement of doubly resonant 2D optical nonlinearity. Nano Lett., 16, 1631(2016).

    [14] W.-T. Hsu, Z.-A. Zhao, L.-J. Li et al. Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers. ACS Nano, 8, 2951(2014).

    [15] H. Liu, Y. Li, Y. S. You et al. High-harmonic generation from an atomically thin semiconductor. Nat. Phys., 13, 262(2017).

    [16] C. T. Le, D. J. Clark, F. Ullah et al. Nonlinear optical characteristics of monolayer MoSe2. Ann. Phys. Lpz., 528, 551(2016).

    [17] R. W. Boyd. Nonlinear Optics(2020).

    [18] H. Chen, V. Corboliou, A. S. Solntsev et al. Enhanced second-harmonic generation from two-dimensional MoSe2 on a silicon waveguide. Light Sci. Appl., 6, e17060(2017).

    [19] G. Q. Ngo, E. Najafidehaghani, Z. Gan et al. In-fibre second-harmonic generation with embedded two-dimensional materials. Nat. Photonics, 16, 769(2022).

    [20] B. Jiang, Z. Hao, Y. Ji et al. High-efficiency second-order nonlinear processes in an optical microfibre assisted by few-layer GaSe. Light Sci. Appl., 9, 63(2020).

    [21] Y. Zuo, W. Yu, C. Liu et al. Optical fibres with embedded two-dimensional materials for ultrahigh nonlinearity. Nat. Nanotechnol., 15, 987(2020).

    [22] Z. Hao, B. Jiang, Y. Ma et al. Broadband and continuous wave pumped second-harmonic generation from microfiber coated with layered GaSe crystal. Opto-Electron. Adv., 6, 230012(2023).

    [23] J. Xie, X. Cheng, G. Xue et al. Critical-layered MoS2 for the enhancement of supercontinuum generation in photonic crystal fibre. Adv. Mater., 36, 2403696(2024).

    [24] T. K. Fryett, K. L. Seyler, J. Zheng et al. Silicon photonic crystal cavity enhanced second-harmonic generation from monolayer WSe2. 2D Mater., 4, 015031(2016).

    [25] L. Zhang, R. Gogna, W. Burg et al. Photonic-crystal exciton-polaritons in monolayer semiconductors. Nat. Commun., 9, 713(2018).

    [26] J. Shi, X. Wu, K. Wu et al. Giant enhancement and directional second harmonic emission from monolayer WS2 on silicon substrate via Fabry-Pérot micro-cavity. ACS Nano, 16, 13933(2022).

    [27] J. Shi, W.-Y. Liang, S. S. Raja et al. Plasmonic enhancement and manipulation of optical nonlinearity in monolayer tungsten disulfide. Laser Photonics Rev., 12, 1800188(2018).

    [28] Y. Ding, C. Wei, H. Su et al. Second harmonic generation covering the entire visible range from a 2D material–plasmon hybrid metasurface. Adv. Opt. Mater., 9, 2100625(2021).

    [29] N. Bernhardt, K. Koshelev, S. J. White et al. Quasi-BIC resonant enhancement of second-harmonic generation in WS2 monolayers. Nano Lett., 20, 5309(2020).

    [30] F. J. Löchner, A. George, K. Koshelev et al. Hybrid dielectric metasurfaces for enhancing second-harmonic generation in chemical vapor deposition grown MoS2 monolayers. ACS Photonics, 8, 218(2020).

    [31] Z.-K. Zhou, H.-F. Xu, Y. Yu et al. Giant nonlinear response of monolayer induced by optimal field-enhancement gain mode on the surface of hyperbolic metamaterials. Laser Photonics Rev., 15, 2100281(2021).

    [32] Y. Deng, Z. Shi, Y. Zheng et al. Highly efficient ultraviolet third-harmonic generation in an isolated thin Si meta-structure. Adv. Sci., 11, 2404094(2024).

    [33] X. Guo, C.-L. Zou, H. X. Tang. Second-harmonic generation in aluminum nitride microrings with 2500%/w conversion efficiency. Optica, 3, 1126(2016).

    [34] J. Fürst, D. Strekalov, D. Elser et al. Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator. Phys. Rev. Lett., 104, 153901(2010).

    [35] J. Lu, J. B. Surya, X. Liu et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/w. Optica, 6, 1455(2019).

    [36] B.-Y. Xu, L.-K. Chen, J.-T. Lin et al. Spectrally multiplexed and bright entangled photon pairs in a lithium niobate microresonator. Sci. China Phys. Mech. Astron., 65, 294262(2022).

    [37] X. Guo, C.-L. Zou, C. Schuck et al. Parametric down-conversion photon-pair source on a nanophotonic chip. Light Sci. Appl., 6, e16249(2017).

    [38] T. J. Steiner, J. E. Castro, L. Chang et al. Ultrabright entangled-photon-pair generation from an AlGaAs-on-insulator microring resonator. PRX Quantum, 2, 010337(2021).

    [39] X. Jiang, A. J. Qavi, S. H. Huang et al. Whispering-gallery sensors. Matter, 3, 371(2020).

    [40] S. Spillane, T. Kippenberg, K. Vahala. Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nature, 415, 621(2002).

    [41] S. Fujii, N. Fang, D. Yamashita et al. van der Waals decoration of ultra-high-Q silica microcavities for χ(2)−χ(3) hybrid nonlinear photonics. Nano Lett., 24, 4209(2024).

    [42] W. Mao, Y. Li, X. Jiang et al. A whispering-gallery scanning microprobe for Raman spectroscopy and imaging. Light Sci. Appl., 12, 247(2023).

    [43] Z. Wang, Z. Dong, Y. Gu et al. Giant photoluminescence enhancement in tungsten-diselenide–gold plasmonic hybrid structures. Nat. Commun., 7, 11283(2016).

    [44] Z. Wang, Z. Dong, H. Zhu et al. Selectively plasmon-enhanced second-harmonic generation from monolayer tungsten diselenide on flexible substrates. ACS Nano, 12, 1859(2018).

    [45] X. Han, K. Wang, P. D. Persaud et al. Harmonic resonance enhanced second-harmonic generation in the monolayer WS2–Ag nanocavity. ACS Photonics, 7, 562(2020).

    [46] H. Zeng, G.-B. Liu, J. Dai et al. Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Sci. Rep., 3, 1608(2013).

    [47] X.-Z. Qi, X.-F. Ren. Enhancement of the second harmonic generation from monolayer WS2 coupled with a silica microsphere. Chin. Phys. B, 31, 104203(2022).

    [48] X. Zhang, Q.-T. Cao, Z. Wang et al. Symmetry-breaking-induced nonlinear optics at a microcavity surface. Nat. Photonics, 13, 21(2019).

    Boyu Xu, Xiao Xiong, Rui Niu, Guangyuan Qu, Chunhua Dong, Guang-Can Guo, Xifeng Ren, "Giant enhancement of second-harmonic generation from microcavity-integrated monolayer WS2," Chin. Opt. Lett. 23, 061901 (2025)
    Download Citation