[4] PRAKASH A D, SINGH M, MISHRA R K, et al. Studies on modified borosilicate glass for enhancement of solubility of molybdenum[J]. J Non-Cryst Solids, 2019, 510: 172-178.
[6] JANTZEN C M. Systems, approach to nuclear waste glass development[J]. J Non-Cryst Solids, 1986, 84: 215-225.
[7] HRMA P, PIEPEL G F, SCHWEIGER M. J. Property/composition relationships for hanford high-level waste glasses melting at 1 150 ℃[R]. PNL-10359, Richland, WA: Pacific Northwest Laboratory, 1994.
[8] VIENNA J, KIM D, HRMA P. Database and interim glass property models for hanford HLW and LAW glasses[R]. PNNL-14060, Richland, WA: Pacific Northwest Laboratory, 2002.
[9] KIM D S. Glass property models, constraints, and formulation approaches for vitrification of high-level nuclear wastes at the US hanford Site[J]. J Korean Ceram Soc, 2015, 52(2): 92-102.
[10] VIENNA J, FLUEGEL A, KIM D S. Glass property data and models for estimating high-Level waste glass volume[R]. PNNL-18501, Richland, WA: Pacific Northwest Laboratory, 2009.
[11] VIENNA J D, KIM D S, SKORSKI DANIEL C, et al. Glass property models and constraints for estimating the glass to be produced at hanford by implementing current advanced glass formulation efforts[R]. Pacific Northwest National Lab. (PNNL), Richland, WA, 2013.
[13] ZHANG Liyan, XU Yongchun, LI Hong. “Gene” modeling approach to new glass design[J]. Int J Appl Glass Sci, 2019, 11(2): 294-306.
[14] ZHANG Liyan, LI Hong, HU Lili. Statistical structure analysis of GeO2 modified Yb3+: Phosphate glasses based on Raman and FTIR study[J]. J Alloys Compounds, 2017, 698: 103-113.
[15] ZHANG Liyan, LI Hong, HU Lili. Statistical approach to modeling relationships of composition-structure-property I: Alkaline earth phosphate glasses[J]. J Alloys Compounds,2018, 734: 163-171.
[16] LIU Wenxiu, YAN Sasa, WANG Yajie, et al. Composition- structure-property modeling for Nd3+ doped alkali-phosphate laser glass[J]. Opt Mater, 2020, 102.
[18] LI H, LI L, VIENNA J D, et al. Neodymium(III) in alumino- borosilicate glasses[J]. J Non-Cryste Solids, 2000, 278: 35-57.
[19] ZHU Hanzhen, WANG Fu, LIAO Qilong, et al. Effect of CeO2 and Nd2O3 on phases, microstructure and aqueous chemical durability of borosilicate glass-ceramics for nuclear waste immobilization[J]. Mater Chem Physs, 2020, 249(19): 122936.
[20] GILLETTE P C, LANDO J B, KOENIG L. Band shape analysis of fourier transform infrared spectra[J]. Appl Spectrosc, 1982, 36(4): 401-404.
[21] R CICEO LUCACEL, T RADU, A S TATAR, et al. The influence of local structure and surface morphology on the antibacterial activity of silver-containing calcium borosilicate glasses[J]. J Non-Cryst Solids, 2014, 404: 98-103.
[22] MIHAILOVA B, ZOTOV N, MARINOV M, et al. Vibrational spectra of rings in silicate glasses[J]. J Non-Cryst Solids, 1994, 168: 265-274.
[23] EL-DAMRAWI G, El-Egili K. Characterization of novel CeO2-B2O3 glasses, structure and properties[J]. Physica B, 2001, 299: 180-186.
[24] EREMYASHEV V E, KORINEVSKAYA G G, BUKALOV S S. Titanium in the Structure of alkali borosilicate glasses[J]. Glass Ceram, 2016, 72(11-12): 405-408.
[25] EL-EGILI K. Infrared studies of Na2O-B2O3-SiO2 and Al2O3-Na2O- B2O3-SiO2 glasses[J]. Physica B 2003, 325: 340-348.
[26] LAI Yuanming, ZENG Yiming, TANG Xiaoli, et al. Structural investigation of calcium borosilicate glasses with varying Si/Ca ratios by infrared and Raman spectroscopy[J]. RSC Adva, 2016, 6(96): 93722-93728.
[27] WINTERSTEIN-BECKMANN A, MONCKE D, PALLES D, et al. A Raman-spectroscopic study of indentation-induced structural changes in technical alkali-borosilicate glasses with varying silicate network connectivity[J]. J Non-Cryst Solids, 2014, 405: 196-206.
[28] DOWEIDAR H, SADDEEK Yasser B. Effect of La2O3 on the structure of lead borate glasses[J]. J Non-Cryst Solids, 2010, 356(28-30): 1452-1457.
[29] GIN S, ABDELOUAS A, CRISCENTI L J, et al. An international initiative on long-term behavior of high-level nuclear waste glass[J]. Mater Today, 2013, 16(6): 243-248.