• Chinese Journal of Lasers
  • Vol. 50, Issue 1, 0113016 (2023)
Xi Wang1 and Hongyan Liang1、2、*
Author Affiliations
  • 1School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
  • 2Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, Ministry of Education, Tianjin University,Tianjin 300350, China
  • show less
    DOI: 10.3788/CJL221040 Cite this Article Set citation alerts
    Xi Wang, Hongyan Liang. Plasmonic Nanourchin Enhanced Hot Carrier Generation and Injection[J]. Chinese Journal of Lasers, 2023, 50(1): 0113016 Copy Citation Text show less
    References

    [1] Linic S, Christopher P, Ingram D B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy[J]. Nature Materials, 10, 911-921(2011).

    [2] Linic S, Aslam U, Boerigter C et al. Photochemical transformations on plasmonic metal nanoparticles[J]. Nature Materials, 14, 567-576(2015).

    [3] Zheng Z K, Tachikawa T, Majima T. Plasmon-enhanced formic acid dehydrogenation using anisotropic Pd-Au nanorods studied at the single-particle level[J]. Journal of the American Chemical Society, 137, 948-957(2015).

    [4] Clavero C. Plasmon-induced hot-electron generation at nanoparticle/ metal-oxide interfaces for photovoltaic and photocatalytic devices[J]. Nature Photonics, 8, 95-103(2014).

    [5] Brongersma M L, Halas N J, Nordlander P. Plasmon-induced hot carrier science and technology[J]. Nature Nanotechnology, 10, 25-34(2015).

    [6] Yang B, Li C Y, Wang Z F et al. Thermoplasmonics in solar energy conversion: materials, nanostructured designs, and applications[J]. Advanced Materials, 34, 2107351(2022).

    [7] Liu L Q, Ouyang S X, Ye J H. Gold-nanorod-photosensitized titanium dioxide with wide-range visible-light harvesting based on localized surface plasmon resonance[J]. Angewandte Chemie (International Ed. in English), 52, 6689-6693(2013).

    [8] Wang X, Liu C X, Gao C C et al. Self-constructed multiple plasmonic hotspots on an individual fractal to amplify broadband hot electron generation[J]. ACS Nano, 15, 10553-10564(2021).

    [9] Zhou L N, Zhang C, McClain M J et al. Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation[J]. Nano Letters, 16, 1478-1484(2016).

    [10] Zhou L N, Martirez J M P, Finzel J et al. Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts[J]. Nature Energy, 5, 61-70(2020).

    [11] Pan S H, Yu H, Zhao Y P et al. FDTD simulation and study on effect of metal nanoparticle introduction on light extraction of top-emitting OLED[J]. Acta Optica Sinica, 42, 0916001(2022).

    [12] Wolf M. Femtosecond dynamics of electronic excitations at metal surfaces[J]. Surface Science, 377/378/379, 343-349(1997).

    [13] Hartland G V, Besteiro L V, Johns P et al. What’s so hot about electrons in metal nanoparticles?[J]. ACS Energy Letters, 2, 1641-1653(2017).

    [14] Govorov A O, Zhang H, Demir H V et al. Photogeneration of hot plasmonic electrons with metal nanocrystals: quantum description and potential applications[J]. Nano Today, 9, 85-101(2014).

    [15] Wang Z L, Du J, Zhang Y Z et al. Free-standing nanoporous gold for direct plasmon enhanced electro-oxidation of alcohol molecules[J]. Nano Energy, 56, 286-293(2019).

    [16] Hou W B, Hung W H, Pavaskar P et al. Photocatalytic conversion of CO2 to hydrocarbon fuels via plasmon-enhanced absorption and metallic interband transitions[J]. ACS Catalysis, 1, 929-936(2011).

    [17] Collado L, Reynal A, Fresno F et al. Unravelling the effect of charge dynamics at the plasmonic metal/semiconductor interface for CO2 photoreduction[J]. Nature Communications, 9, 4986(2018).

    [18] Feng K, Wang S H, Zhang D K et al. Cobalt plasmonic superstructures enable almost 100% broadband photon efficient CO2 photocatalysis[J]. Advanced Materials, 32, 2000014(2020).

    [19] Fu B X, Wang L L, Zhang X et al. Optical properties of Ag nanonetwork structure[J]. Laser & Optoelectronics Progress, 59, 1716002(2022).

    [20] Giugni A, Torre B, Toma A et al. Hot-electron nanoscopy using adiabatic compression of surface plasmons[J]. Nature Nanotechnology, 8, 845-852(2013).

    [21] Liu Y W, Chen Q L, Cullen D A et al. Efficient hot electron transfer from small Au nanoparticles[J]. Nano Letters, 20, 4322-4329(2020).

    [22] Santiago E Y, Besteiro L V, Kong X T et al. Efficiency of hot-electron generation in plasmonic nanocrystals with complex shapes: surface-induced scattering, hot spots, and interband transitions[J]. ACS Photonics, 7, 2807-2824(2020).

    [23] Valenti M, Jonsson M P, Biskos G et al. Plasmonic nanoparticle-semiconductor composites for efficient solar water splitting[J]. Journal of Materials Chemistry A, 4, 17891-17912(2016).

    [24] Ratchford D C, Dunkelberger A D, Vurgaftman I et al. Quantification of efficient plasmonic hot-electron injection in gold nanoparticle-TiO2 films[J]. Nano Letters, 17, 6047-6055(2017).

    [25] Ma J, Zhang X D, Gao S W. Tunable electron and hole injection channels at plasmonic Al-TiO2 interfaces[J]. Nanoscale, 13, 14073-14080(2021).

    [26] Hattori Y, Álvarez S G, Meng J et al. Role of the metal oxide electron acceptor on gold-plasmon hot-carrier dynamics and its implication to photocatalysis and photovoltaics[J]. ACS Applied Nano Materials, 4, 2052-2060(2021).

    [27] Gao X D, Fei G T, Zhang Y et al. All-optical-input transistors: light-controlled enhancement of plasmon-induced photocurrent[J]. Advanced Functional Materials, 28, 1802288(2018).

    [28] Li J T, Cushing S K, Meng F K et al. Plasmon-induced resonance energy transfer for solar energy conversion[J]. Nature Photonics, 9, 601-607(2015).

    [29] Wang X, Yao K L, Liu L H et al. Enhancing hot electron generation and injection with plasmonic nanostructures[J]. Journal of Alloys and Compounds, 893, 162214(2022).

    [30] Liu S L, Fei G T, Xu S H et al. All-optical-input transistors with light-controlled enhancement and fast stabilization of hot-electron photocurrent[J]. The Journal of Physical Chemistry C, 125, 18887-18895(2021).

    [31] Liu M, Pang Y J, Zhang B et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration[J]. Nature, 537, 382-386(2016).

    [32] Liu Z, Yang Z B, Peng B et al. Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins[J]. Advanced Materials, 26, 2431-2439(2014).

    [33] Zhu H F, Xie H, Yang Y et al. Mapping hot electron response of individual gold nanocrystals on a TiO2 photoanode[J]. Nano Letters, 20, 2423-2431(2020).

    [34] Liu Z Y, Qiao X S, Fan X P. Research progress on spectral conversion materials for solar cells[J]. Laser&Optoelectronics Progress, 58, 1516010(2021).

    [35] Khurgin J B. How to deal with the loss in plasmonics and metamaterials[J]. Nature Nanotechnology, 10, 2-6(2015).

    [36] Chen K X, Wang H. Plasmon-driven photocatalytic molecular transformations on metallic nanostructure surfaces: mechanistic insights gained from plasmon-enhanced Raman spectroscopy[J]. Molecular Systems Design & Engineering, 6, 250-280(2021).

    [37] Sousa-Castillo A, Comesaña-Hermo M, Rodríguez-González B et al. Boosting hot electron-driven photocatalysis through anisotropic plasmonic nanoparticles with hot spots in Au-TiO2 nanoarchitectures[J]. The Journal of Physical Chemistry C, 120, 11690-11699(2016).

    [38] Ramakrishnan S B, Mohammadparast F, Dadgar A P et al. Photoinduced electron and energy transfer pathways and photocatalytic mechanisms in hybrid plasmonic photocatalysis[J]. Advanced Optical Materials, 9, 2101128(2021).

    [39] Moon C W, Choi M J, Hyun J K et al. Enhancing photoelectrochemical water splitting with plasmonic Au nanoparticles[J]. Nanoscale Advances, 3, 5981-6006(2021).

    [40] Wang T M, Zheng S K, Hao W C et al. Studies on photocatalytic activity and transmittance spectra of TiO2 thin films prepared by r.f. magnetron sputtering method[J]. Surface and Coatings Technology, 155, 141-145(2002).

    [41] Wang Y, Xuan X F, Zhu L et al. Design of ultra-broadband and high-absorption metamaterial solar absorber[J]. Chinese Journal of Lasers, 49, 0903001(2022).

    [42] Zhou L N, Swearer D F, Zhang C et al. Quantifying hot carrier and thermal contributions in plasmonic photocatalysis[J]. Science, 362, 69-72(2018).

    [43] Wang X M, Wang H, Zhang H F et al. Dynamic interaction between methylammonium lead iodide and TiO2 nanocrystals leads to enhanced photocatalytic H2 evolution from HI splitting[J]. ACS Energy Letters, 3, 1159-1164(2018).

    [44] Yang X J, Wu X L, Li J et al. TiO2-Au composite nanofibers for photocatalytic hydrogen evolution[J]. RSC Advances, 9, 29097-29104(2019).

    [45] Naldoni A, Altomare M, Zoppellaro G et al. Photocatalysis with reduced TiO2: from black TiO2 to cocatalyst-free hydrogen production[J]. ACS Catalysis, 9, 345-364(2019).

    [46] Gargiulo J, Berte R, Li Y et al. From optical to chemical hot spots in plasmonics[J]. Accounts of Chemical Research, 52, 2525-2535(2019).

    [47] Monch W. On the physics of metal-semiconductor interfaces[J]. Reports on Progress in Physics, 53, 221-278(1990).

    [48] Mukherjee S, Zhou L N, Goodman A M et al. Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2[J]. Journal of the American Chemical Society, 136, 64-67(2014).

    Xi Wang, Hongyan Liang. Plasmonic Nanourchin Enhanced Hot Carrier Generation and Injection[J]. Chinese Journal of Lasers, 2023, 50(1): 0113016
    Download Citation