• NUCLEAR TECHNIQUES
  • Vol. 47, Issue 7, 070604 (2024)
Shuaiyu XUE1,2, Chong ZHOU1,2,*, Yang ZOU1,2, and Hongjie XU1,2
Author Affiliations
  • 1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.11889/j.0253-3219.2024.hjs.47.070604 Cite this Article
    Shuaiyu XUE, Chong ZHOU, Yang ZOU, Hongjie XU. Natural circulation characteristics of main loop after shutdown of liquid-fuel molten salt reactor[J]. NUCLEAR TECHNIQUES, 2024, 47(7): 070604 Copy Citation Text show less
    References

    [1] Juhn P E, Kupitz J, Cleveland J et al. IAEA activities on passive safety systems and overview of international development[J]. Nuclear Engineering and Design, 201, 41-59(2000).

    [2] Duan W S, Zou Z R, Luo X et al. Startup scheme optimization and flow instability of natural circulation lead-cooled fast reactor SNCLFR-100[J]. Nuclear Science and Techniques, 32, 133(2021).

    [3] Liu Y B, Meng X Y, Wang X S et al. Transient analysis and optimization of passive residual heat removal heat exchanger in advanced nuclear power plant[J]. Nuclear Science and Techniques, 33, 106(2022).

    [4] Nian V. Technology perspectives from 1950 to 2100 and policy implications for the global nuclear power industry[J]. Progress in Nuclear Energy, 105, 83-98(2018).

    [5] XU Hongjie, DAI Zhimin, CAI Xiangzhou et al. Thorium-based molten salt reactor and comprehensive utilization of nuclear energy[J]. Modern Physics, 30, 25-34(2018).

    [6] CAI Xiangzhou, DAI Zhimin, XU Hongjie. Thorium molten salt reactor nuclear energy system[J]. Physics, 45, 578-590(2016).

    [7] Robertson R. MSRE design and operations report. Part I. description of reactor design[R](1965).

    [8] Abram T, Ion S. Generation-IV nuclear power: a review of the state of the science[J]. Energy Policy, 36, 4323-4330(2008).

    [9] WANG Lei, CAI Chuangxiong, ZHAO Jing et al. Experiment and calculation of the heat loss power of molten salt natural circulation loop[J]. Nuclear Techniques, 39, 080601(2016).

    [10] WU Lei, JIA Haijun, LIU Yang et al. Theoretical and experimental study on flow resistance characteristics of natural circulation system[J]. Nuclear Power Engineering, 37, 10-15(2016).

    [11] Fakhrarei A, Faghihi F, Dast-belaraki M A. Theoretical study on the passively decay heat removal system and the primary loop flow rate of nuScale SMR[J]. Annals of Nuclear Energy, 161, 108420(2021).

    [12] Wu G W, Li Y Z, Wang M H et al. Design and performance analysis of passive residual heat removal system for a lead-cooled fast reactor[J]. Progress in Nuclear Energy, 103, 236-242(2018).

    [13] Li F, Lu Y Z, Chu X et al. Design, experiment, and commissioning of the passive residual heat removal system of China's generation III nuclear power HPR1000[J]. Science and Technology of Nuclear Installations, 2021, 6680400(2021).

    [14] Lyu X, Peng M J, Xia G L. Analysis of start-up and long-term operation characteristics of passive residual heat removal system[J]. Annals of Nuclear Energy, 130, 69-81(2019).

    [15] Ruiz D E, Cammi A, Luzzi L. Dynamic stability of natural circulation loops for single phase fluids with internal heat generation[J]. Chemical Engineering Science, 126, 573-583(2015).

    [16] JIN Yuan, CHENG Jinhui, WANG Kun et al. Research on thermo-physical properties of several typical molten salt coolants[J]. Nuclear Techniques, 39, 050604(2016).

    [17] Zou L, Hu G J, O'Grady D et al. Code validation of SAM using natural-circulation experimental data from the compact integral effects test (CIET) facility[J]. Nuclear Engineering and Design, 377, 111144(2021).

    Shuaiyu XUE, Chong ZHOU, Yang ZOU, Hongjie XU. Natural circulation characteristics of main loop after shutdown of liquid-fuel molten salt reactor[J]. NUCLEAR TECHNIQUES, 2024, 47(7): 070604
    Download Citation