• Optical Communication Technology
  • Vol. 47, Issue 4, 1 (2023)
FENG Yao11,2, GENG Minming1,2,3,4, HE Wancai1,2, LAI Mingbing1,2..., LIU Qiang1,2,3 and ZHANG Zhenrong1,2,3|Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    DOI: 10.13921/j.cnki.issn1002-5561.2023.04.001 Cite this Article
    FENG Yao1, GENG Minming, HE Wancai, LAI Mingbing, LIU Qiang, ZHANG Zhenrong. Plum-like two-dimensional grating coupler based on SOI[J]. Optical Communication Technology, 2023, 47(4): 1 Copy Citation Text show less
    References

    [1] SOREF R. The past, present, and future of silicon photonics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(6): 1678-1687.

    [2] RAHIM A, SPUESENS T, BAETS R, et al. Open-access silicon photo-nics: current status and emerging initiatives[J]. Proceedings of the IEEE, 2018, 106(12): 2313-2330.

    [3] YANG Y, HOU Z J, ZHU X, et al. A millimeter-wave reconfigurable on-chip coupler with tunable power-dividing ratios in 0.13-μm BiCMOS technology[J]. IEEE Transactions on Circuits and Systems I: Regular Pa-pers, 2020, 67(5): 1516-1526.

    [4] LACAVA C, CARROLL L, GERACE D, et al. Performance of 2D-grating couplers designed through full 3D-FDTD numerical simulations[C]//IEEE. Proceedings of 11th International Conference on Group IV Photo-nics (GFP). Paris: IEEE, 2014: 203-204.

    [5] MARCHETTI R, LACAVA C, CARROLL L, et al. Coupling strategies for silicon photonics integrated chips[J]. Photonics Research, 2019, 7(2): 201-239.

    [6] HE A, GUO X, WANG K, et al. Low loss, large bandwidth fiber-chip edge couplers based on silicon-on-insulator platform[J]. Journal of Light-wave Technology, 2020, 38(17): 4780-4786.

    [7] LI Y, WANG M, YANG S, et al. Polarization insensitive edge coupler assisted by subwavelength grating and suspended structure[J]. IEEE Photo-nics Technology Letters, 2022, 34(14): 765-768.

    [8] LIN Y, MAK J C C, CHEN H, et al. Low-loss broadband bi-layer edge couplers for visible light[J]. Optics Express, 2021, 29(21): 34565-34576.

    [9] YU J, YAMADA H. Design and investigation of a dual-layer grating coupler for efficient vertical fiber-chip coupling[J]. Applied Physics Expre-ss, 2018, 12(1): 12004-1-12004-5.

    [10] WANG S, HONG Y, ZHU Y, et al. Compact high-efficiency perfectly-vertical grating coupler on silicon at O-band[J]. Optics Express, 2017, 25(18): 22032-22037.

    [11] LUO H, XIE F, CAO Y, et al. Low-loss and broadband fiber-to-chip coupler by 3D fabrication on a silicon photonic platform[J]. Optics Letters, 2020, 45(5): 1236-1239.

    [12] MELKONYAN H, SLOYAN K, TWAYANA K, et al. Efficient fiber-to-waveguide edge coupling using an optical fiber axicon lens fabricated by focused ion beam[J]. IEEE Photonics Journal, 2017, 9(4): 1-9.

    [13] MEKIS A, GLOECKNER S, MASINI G, et al. A grating-coupler-enabled CMOS photonics platform[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 17(3): 597-608.

    [14] ROELKENS G, VERMEUNLEN D, THOURHOUT D V, et al. High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit[J]. App-lied Physicsletters, 2008, 92(13):1-3.

    [15] AKCAY B, GUNES H A, KURT H, et al. A fiber-to-waveguide, 1D grating coupler design using genetic algorithm for 1550 nm applications[C]//SPIE. Proceedings of Integrated Photonics Platforms II. Bellingham: SPIE, 2022, 12148: 70-75.

    [16] CHEN B, RUAN Z, CHEN K, et al. One-dimensional grating coupler on lithium-niobate-on-insulator for high-efficiency and polarization-inde-pendent coupling[J]. Optics Letters, 2023, 48(6): 1434-1437.

    [17] YU J, WANG W, YANG L, et al. Silicon-based polarization insensi-tive grating coupler[C]//SPIE. Proceedings of International Conference on Optoelectronic and Microelectronic Technology and Application. Belling-ham: SPIE, 2020, 11617: 162-168.

    [18] MA X, ZHUANG C, ZENG R, et al. Polarization-independent one-dimensional grating coupler design on hybrid silicon/LNOI platform[J]. Optics Express, 2020, 28(11): 17113-17121.

    [19] TONG Y, ZHOU W, WU X, et al. Efficient mode multiplexer for few-mode fibers using integrated silicon-on-insulator waveguide grating coupler[J]. IEEE Journal of Quantum Electronics, 2019, 56(1): 1-7.

    [20] SOBU Y, JEONG S H, TANAKA Y. Si-wire two-dimensional grating coupler with polarization-dependent loss of lower than 0.3 dB over a 60 nm-wide spectral range[J]. Japanese Journal of Applied Physics, 2018, 57(11): 112501-1-112501-5.

    [21] XUE Y, CHEN H, BAO Y, et al. Low polarization dependent loss two-dimensional grating coupler[C]//IEEE. Proceedings of 2019 18th Internatio-nal Conference on Optical Communications and Networks(ICOCN). Hua-ngshan: IEEE, 2019: 1-3.

    [22] XUE Y, CHEN H, BAO Y, et al. Two-dimensional silicon photonic grating coupler with low polarization-dependent loss and high tolerance[J]. Optics Express, 2019, 27(16): 22268-22274.

    [23] ZOU J, YU Y, ZHANG X. Single step etched two dimensional grat-ing coupler based on the SOI platform[J]. Optics Express, 2015, 23(25):32490-32495.

    [24] LUO Y, NONG Z, GAO S, et al. Low-loss two-dimensional silicon photonic grating coupler with a backside metal mirror[J]. Optics Letters, 2018, 43(3): 474-477.

    [25] NONG Z, LUO Y, GAO S, et al. Low-loss two-dimensional grating coupler on SOI platform with bonded metal mirror[C]//IEEE. Proceedings of 2017 Conference on Lasers and Electro-Optics(CLEO). San Jose: IEEE, 2017: 1-2.

    [26] ROSA M F, CASTRO P, HOPPE N, et al. Novel design of two-dimen-sional grating couplers with backside metal mirror in 250 nm silicon-on-insulator[C]//IEEE. Proceedings of 2017 International Conference on Num-erical Simulation of Optoelectronic Devices(NUSOD). Copenhagen: IEEE, 2017: 81-82.

    [27] WATANABE T, FEDORYSHYN Y, LEUTHOLD J. 2-D grating cou-plers for vertical fiber coupling in two polarizations[J]. IEEE Photonics Journal, 2019, 11(4): 1-9.

    [28] WATANABE T, BITACHON B I, FEDORYSHYN Y, et al. Coherent few mode demultiplexer realized as a 2D grating coupler array in silicon[J]. Optics Express, 2020, 28(24): 36009-36019.

    [29] ZHANG Z, CHEN X, CHENG Q, et al. Two-dimensional apodized grating coupler for polarization-independent and surface-normal optical coupling[J]. Journal of Lightwave Technology, 2020, 38(15): 4037-4044.

    [30] VAN F, BOGAERTS W, DUMON P, et al. Focusing polarization diversity grating couplers in silicon-on-insulator[J]. Journal of Light-wave Technology, 2009, 27(5): 612-618.

    [31] SOBU Y, JEONG S H, TANAKA Y. Demonstration of low polariza-tion dependent loss of 1.3 μm two dimensional grating coupler[C]//IEEE. Proceedings of 2017 IEEE 14th International Conference on Group IV Pho-tonics(GFP). Berlin: IEEE, 2017: 127-128.

    [32] ZHANG Z, ZHANG K, CHENG Q, et al. High-efficiency two-dimen-sional perfectly vertical grating coupler with ultra-low polarization depend-ent loss and large fibre misalignment tolerance[J]. IEEE Journal of Quant-um Electronics, 2021, 57(5): 1-7.

    [33] LUO Y, NONG Z, GAO S, et al. Low-loss two-dimensional silicon photonic grating coupler with a backside metal mirror[J]. Optics Letters, 2018, 43(3): 474-477.

    [34] CHANG C, HSU Y, KUO H, et al. Two-dimensional focusing grating couplers for SOI waveguides[C]//IEEE. Proceedings of 2020 Opto-Electro-nics and Communications Conference(OECC).Taipei: IEEE, 2020: 1-3.

    [35] CHEN B, ZHANG X, HU J, et al. Two-dimensional grating coupler on silicon with a high coupling efficiency and a low polarization-dependent loss[J]. Optics Express, 2020, 28(3): 4001-4009.