• Photonics Research
  • Vol. 8, Issue 6, 1059 (2020)
Jordan A. Davis1, Ang Li1、*, Naif Alshamrani1、2, and Yeshaiahu Fainman1
Author Affiliations
  • 1Department of Electrical & Computer Engineering, University of California, San Diego, California 92093, USA
  • 2King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
  • show less
    DOI: 10.1364/PRJ.391128 Cite this Article Set citation alerts
    Jordan A. Davis, Ang Li, Naif Alshamrani, Yeshaiahu Fainman. Novel spectral-shaping building block: a narrowband Mach–Zehnder interferometer[J]. Photonics Research, 2020, 8(6): 1059 Copy Citation Text show less
    References

    [1] D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, J. Capmany. Multipurpose silicon photonics signal processor core. Nat. Commun., 8, 636(2017).

    [2] L. Zhuang, C. G. H. Roeloffzen, M. Hoekman, K.-J. Boller, A. J. Lowery. Programmable photonic signal processor chip for radiofrequency applications. Optica, 2, 854-859(2015).

    [3] N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, D. Englund. Quantum transport simulations in a programmable nanophotonic processor. Nat. Photonics, 11, 447-452(2017).

    [4] I. Zand, W. Bogaerts. Effects of coupling and phase imperfections in programmable photonic hexagonal waveguide meshes. Photon. Res., 8, 211-218(2020).

    [5] D. Perez, I. Gasulla, J. Capmany. Toward programmable microwave photonics processors. J. Lightwave Technol., 36, 519-532(2018).

    [6] C. Taballione, T. A. W. Wolterink, J. Lugani, A. Eckstein, B. A. Bell, R. Grootjans, I. Visscher, J. J. Renema, D. Geskus, C. G. H. Roeloffzen, I. A. Walmsley, P. W. H. Pinkse, K.-J. Boller. 8 × 8 programmable quantum photonic processor based on silicon nitride waveguides. Frontiers in Optics/Laser Science, JTu3A.58(2018).

    [7] D. Pérez, J. Capmany. Scalable analysis for arbitrary photonic integrated waveguide meshes. Optica, 6, 19-27(2019).

    [8] R. A. Soref, F. De Leonardis, V. M. N. Passaro. Mach-Zehnder crossbar switching and tunable filtering using N-coupled waveguide Bragg resonators. Opt. Express, 26, 14959-14971(2018).

    [9] X. Jiang, H. Zhang, C. Qiu, Y. Zhang, Y. Su, R. Soref. Compact and power efficient 2  ×  2 thermo-optical switch based on dual-nanobeam MZI. Optical Fiber Communication Conference, Th2A.7(2018).

    [10] O. Jafari, W. Shi, S. Larochelle. Mach-Zehnder silicon photonic modulator assisted by phase-shifted Bragg gratings. IEEE Photon. Technol. Lett., 32, 445-448(2020).

    [11] W. Shi, H. Yun, C. Lin, J. Flueckiger, N. A. F. Jaeger, L. Chrostowski. Coupler-apodized Bragg-grating add-drop filter. Opt. Lett., 38, 3068-3070(2013).

    [12] M. G. Saber, Z. Xing, D. Patel, E. El-Fiky, N. Abadia, Y. Wang, M. Jacques, M. Morsy-Osman, D. V. Plant. A CMOS compatible ultracompact silicon photonic optical add-drop multiplexer with misaligned sidewall Bragg gratings. IEEE Photon. J., 9, 6601010(2017).

    [13] P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, J. Van Campenhout. Imec iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform. Proc. SPIE, 9367, 93670V(2015).

    [14] H. Qiu, J. Jiang, P. Yu, D. Mu, J. Yang, X. Jiang, H. Yu, R. Cheng, L. Chrostowski. Narrow-band add-drop filter based on phase-modulated grating-assisted contra-directional couplers. J. Lightwave Technol., 36, 3760-3764(2018).

    Jordan A. Davis, Ang Li, Naif Alshamrani, Yeshaiahu Fainman. Novel spectral-shaping building block: a narrowband Mach–Zehnder interferometer[J]. Photonics Research, 2020, 8(6): 1059
    Download Citation