• Acta Physica Sinica
  • Vol. 68, Issue 23, 238901-1 (2019)
Li-Na Wang1,2,*, Yuan-Yuan Cheng1, and Chen-Rui Zang3
Author Affiliations
  • 1College of Sciences, Inner Mongolian University of Technology, Hohhot 010051, China
  • 2Inner Mongolian Key Laboratory of Statistical Analysis Theory for Life Data and Neural Network Modeling, Hohhot 010051, China
  • 3Inner Mongolian Branch, China Unicom, Hohhot 010050, China
  • show less
    DOI: 10.7498/aps.68.20190794 Cite this Article
    Li-Na Wang, Yuan-Yuan Cheng, Chen-Rui Zang. A symbolized time series network based on seasonal-trend-loess method[J]. Acta Physica Sinica, 2019, 68(23): 238901-1 Copy Citation Text show less
    (a)−(d) The STL analyzing for the air passengers throughput time series: (a) Original time series; (b) seasonal time series; (c) trend time series; (d) remainder time series; (e) the time series network of the air passengers throughput data.(a)−(d)航空旅客吞吐量时间序列的STL分析 (a)原始时间序列; (b)季节项时间序列; (c) 趋势项时间序列; (d) 随机项时间序列; (e)航空旅客吞吐量时间序列网络
    Fig. 1. (a)−(d) The STL analyzing for the air passengers throughput time series: (a) Original time series; (b) seasonal time series; (c) trend time series; (d) remainder time series; (e) the time series network of the air passengers throughput data.(a)−(d)航空旅客吞吐量时间序列的STL分析 (a)原始时间序列; (b)季节项时间序列; (c) 趋势项时间序列; (d) 随机项时间序列; (e)航空旅客吞吐量时间序列网络
    The degree distribution of the time series network for air passengers throughput data: (a) The cumulative weighted in-degree distribution; (b) the cumulative weighted out-degree distribution; (c) the cumulative weighted degree distribution.航空旅客吞吐量时间序列网络度分布 (a)累积加权入度分布; (b)累积加权出度分布; (c)累积加权度分布
    Fig. 2. The degree distribution of the time series network for air passengers throughput data: (a) The cumulative weighted in-degree distribution; (b) the cumulative weighted out-degree distribution; (c) the cumulative weighted degree distribution.航空旅客吞吐量时间序列网络度分布 (a)累积加权入度分布; (b)累积加权出度分布; (c)累积加权度分布
    (a)−(d) The STL decomposition results of the Internet traffic time series: (a) Original time series; (b) seasonal time series; (c) trend time series; (d) remainder time series; (e) the time series network of the Internet traffic data.(a)−(d)因特网流量时间序列的STL分析 (a)原始时间序列; (b)季节项时间序列; (c) 趋势项时间序列; (d) 随机项时间序列; (e)因特网流量时间序列网络
    Fig. 3. (a)−(d) The STL decomposition results of the Internet traffic time series: (a) Original time series; (b) seasonal time series; (c) trend time series; (d) remainder time series; (e) the time series network of the Internet traffic data.(a)−(d)因特网流量时间序列的STL分析 (a)原始时间序列; (b)季节项时间序列; (c) 趋势项时间序列; (d) 随机项时间序列; (e)因特网流量时间序列网络
    The degree distribution of the time series network for the Internet traffic data: (a) The cumulative weighted in-degree distribution; (b) the cumulative weighted out-degree distribution; (c) the cumulative weighted degree distribution.因特网流量时间序列网络的度分布 (a)累积加权入度分布; (b)累积加权出度分布; (c)累积加权度分布
    Fig. 4. The degree distribution of the time series network for the Internet traffic data: (a) The cumulative weighted in-degree distribution; (b) the cumulative weighted out-degree distribution; (c) the cumulative weighted degree distribution.因特网流量时间序列网络的度分布 (a)累积加权入度分布; (b)累积加权出度分布; (c)累积加权度分布
    (a)−(d) The STL analyzing for the mobile traffic data: (a) Original time series; (b) seasonal time series; (c) trend time series; (d) remainder time series; (e) based on the STL decomposition, the time series network of the mobile traffic data.(a)−(d)语音时间序列数据的STL分析 (a)原始时间序列; (b)季节项时间序列; (c) 趋势项时间序列; (d) 随机项时间序列; (e)基于STL方法的语音时间序列网络
    Fig. 5. (a)−(d) The STL analyzing for the mobile traffic data: (a) Original time series; (b) seasonal time series; (c) trend time series; (d) remainder time series; (e) based on the STL decomposition, the time series network of the mobile traffic data.(a)−(d)语音时间序列数据的STL分析 (a)原始时间序列; (b)季节项时间序列; (c) 趋势项时间序列; (d) 随机项时间序列; (e)基于STL方法的语音时间序列网络
    The degree distribution of the time series network for the mobile traffic data: (a) The cumulative weighted in-degree distribution; (b) the cumulative weighted out-degree distribution; (c) the cumulative weighted degree distribution.语音时间序列网络的度分布 (a)累积加权入度分布; (b)累积加权出度分布; (c)累积加权度分布
    Fig. 6. The degree distribution of the time series network for the mobile traffic data: (a) The cumulative weighted in-degree distribution; (b) the cumulative weighted out-degree distribution; (c) the cumulative weighted degree distribution.语音时间序列网络的度分布 (a)累积加权入度分布; (b)累积加权出度分布; (c)累积加权度分布
    时间序列网络拓扑特征
    长度周期节点数平均加权度聚类系数平均路径长度加权度分布
    航空旅客吞吐量264121074.4300.16913.355指数分布
    因特网流量31682881605.5380.24925.610幂律分布
    Table 1.

    The comparison for topological characteristics of two kinds time series networks.

    两类时间序列网络拓扑特征的比较

    节点聚类系数节点加权出度节点介数
    dcb1faa3874eoa9810.72
    daa1aaa3780hia9605.21
    aac1haa2597faa9295.21
    deb1eaa2570eaa8532.04
    dfb1gaa2564haa6180.21
    dgb1daa1279aba4185.66
    egc1aba890ana3933.32
    aqb1fba765aoa3649.48
    aob1eba564fra3475.81
    dkb1hba550aga3389.27
    Table 2.

    The table for characteristics of node patterns.

    网络节点模式特征表

    Li-Na Wang, Yuan-Yuan Cheng, Chen-Rui Zang. A symbolized time series network based on seasonal-trend-loess method[J]. Acta Physica Sinica, 2019, 68(23): 238901-1
    Download Citation