• Advanced Photonics Nexus
  • Vol. 4, Issue 3, 036006 (2025)
Tatsuki Tahara1,*, Tomoyoshi Shimobaba2, Yuichi Kozawa3, Mohamad Ammar Alsherfawi Aljazaerly4, and Tomoya Nakamura4
Author Affiliations
  • 1National Institute of Information and Communications Technology, Radio Research Institute, Applied Electromagnetic Research Center, Tokyo, Japan
  • 2Chiba University, Graduate School of Engineering, Chiba, Japan
  • 3Tohoku University, Institute of Multidisciplinary Research for Advanced Materials, Sendai, Japan
  • 4Osaka University, SANKEN, Osaka, Japan
  • show less
    DOI: 10.1117/1.APN.4.3.036006 Cite this Article Set citation alerts
    Tatsuki Tahara, Tomoyoshi Shimobaba, Yuichi Kozawa, Mohamad Ammar Alsherfawi Aljazaerly, Tomoya Nakamura, "Natural-light full-color motion-picture holography," Adv. Photon. Nexus 4, 036006 (2025) Copy Citation Text show less
    References

    [1] D. Gabor. A new microscopic principle. Nature, 161, 777-778(1948). https://doi.org/10.1038/161777a0

    [2] A. W. Lohmann. Wavefront reconstruction for incoherent objects. J. Opt. Soc. Am., 55, 1555-1556(1965). https://doi.org/10.1364/JOSA.55.1555_1

    [3] J.-P. Liu et al. Incoherent digital holography: a review. Appl. Sci., 8, 143(2018). https://doi.org/10.3390/app8010143

    [4] T. Tahara et al. Roadmap of incoherent digital holography. Appl. Phys. B, 128, 193(2022). https://doi.org/10.1007/s00340-022-07911-x

    [5] J. Rosen et al. Roadmap on computational methods in optical imaging and holography. Appl. Phys. B, 130, 166(2024). https://doi.org/10.1007/s00340-024-08280-3

    [6] P. J. Peters. Incoherent holograms with mercury light source. Appl. Phys. Lett., 8, 209-210(1966). https://doi.org/10.1063/1.1754558

    [7] J. Rosen et al. Recent advances in self-interference incoherent digital holography. Adv. Opt. Photon., 11, 1-66(2019). https://doi.org/10.1364/AOP.11.000001

    [8] M. K. Kim. Full color natural light holographic camera. Opt. Express, 21, 9636-9642(2013). https://doi.org/10.1364/OE.21.009636

    [9] A. Vijayakumar et al. Coded aperture correlation holography—a new type of incoherent digital holograms. Opt. Express, 24, 12430-12441(2016). https://doi.org/10.1364/OE.24.012430

    [10] B. W. Schilling et al. Three-dimensional holographic fluorescence microscopy. Opt. Lett., 22, 1506-1508(1997). https://doi.org/10.1364/OL.22.001506

    [11] B. Katz, J. Rosen. Super-resolution in incoherent optical imaging using synthetic aperture with Fresnel elements. Opt. Express, 18, 962-973(2010). https://doi.org/10.1364/OE.18.000962

    [12] J. Rosen, N. Siegel, G. Brooker. Theoretical and experimental demonstration of resolution beyond the Rayleigh limit by FINCH fluorescence microscopic imaging. Opt. Express, 19, 26249-26268(2011). https://doi.org/10.1364/OE.19.026249

    [13] J. Rosen, G. Brooker. Non-scanning motionless fluorescence three-dimensional holographic microscopy. Nat. Photonics, 2, 190-195(2008). https://doi.org/10.1038/nphoton.2007.300

    [14] C. Jang et al. Holographic fluorescence microscopy with incoherent digital holographic adaptive optics. J. Biomed. Opt., 20, 111204(2015). https://doi.org/10.1117/1.JBO.20.11.111204

    [15] M. Liebel et al. 3D tracking of extracellular vesicles by holographic fluorescence imaging. Sci. Adv., 6, eabc2508(2020). https://doi.org/10.1126/sciadv.abc2508

    [16] T. Tahara et al. Single-shot wavelength-multiplexed digital holography for 3D fluorescent microscopy and other imaging modalities. Appl. Phys. Lett., 117, 031102(2020). https://doi.org/10.1063/5.0011075

    [17] D. L. Marks et al. Visible cone-beam tomography with a lensless interferometric camera. Science, 284, 2164-2166(1999). https://doi.org/10.1126/science.284.5423.2164

    [18] D. N. Naik et al. Spectrally resolved incoherent holography: 3D spatial and spectral imaging using a Mach-Zehnder radial-shearing interferometer. Opt. Lett., 39, 1857-1860(2014). https://doi.org/10.1364/OL.39.001857

    [19] T. Tahara et al. Single-shot phase-shifting incoherent digital holography. J. Opt., 19, 065705(2017). https://doi.org/10.1088/2040-8986/aa6e82

    [20] T. Nobukawa et al. Single-shot phase-shifting incoherent digital holography with multiplexed checkerboard phase gratings. Opt. Lett., 43, 1698-1701(2018). https://doi.org/10.1364/OL.43.001698

    [21] K. Choi et al. Compact self-interference incoherent digital holographic camera system with real-time operation. Opt. Express, 27, 4818-4833(2019). https://doi.org/10.1364/OE.27.004818

    [22] T. Tahara. Polarization-filterless polarization-sensitive polarization-multiplexed phase-shifting incoherent digital holography (P4IDH). Opt. Lett., 48, 3881-3884(2023). https://doi.org/10.1364/OL.491990

    [23] B. Zhu, K. Ueda. Real-time wavefront measurement based on diffraction grating holography. Opt. Commun., 225, 1-6(2003). https://doi.org/10.1016/j.optcom.2003.07.025

    [24] J. Millerd et al. Pixelated phase-mask dynamic interferometer. Proc. SPIE, 5531, 304-314(2004). https://doi.org/10.1007/3-540-29303-5_86

    [25] Y. Awatsuji, M. Sasada, T. Kubota. Parallel quasi-phase-shifting digital holography. Appl. Phys. Lett., 85, 1069-1071(2004). https://doi.org/10.1063/1.1777796

    [26] T. Tahara et al. Holography for full-color 3D imaging of natural light with single-path interferometer, ITuAE-02(2022).

    [27] G. Sirat, D. Psaltis. Conoscopic holography. Opt. Lett., 10, 4-6(1985). https://doi.org/10.1364/OL.10.000004

    [28] J. H. Bruning et al. Digital wavefront measuring interferometer for testing optical surfaces and lenses. Appl. Opt., 13, 2693-2703(1974). https://doi.org/10.1364/AO.13.002693

    [29] I. Yamaguchi, T. Zhang. Phase-shifting digital holography. Opt. Lett., 22, 1268-1270(1997). https://doi.org/10.1364/OL.22.001268

    [30] T. Tahara. Multidimension-multiplexed full-phase-encoding holography. Opt. Express, 30, 21582-21598(2022). https://doi.org/10.1364/OE.456229

    [31] A. Buades, B. Coll, J. M. Morel. Denoising image sequences does not require motion estimation, 70-74(2005).

    [32] K. Dabov et al. Image denoising by sparse 3D transform-domain collaborative filtering. IEEE Trans. Image Process., 16, 2080-2095(2007). https://doi.org/10.1109/TIP.2007.901238

    [33] M. Maggioni et al. Nonlocal transform-domain filter for volumetric data denoising and reconstruction. IEEE Trans. Image Process., 22, 119-133(2013). https://doi.org/10.1109/TIP.2012.2210725

    [34] T. Tahara, T. Shimobaba. High-speed phase-shifting incoherent digital holography. Appl. Phys. B, 129, 96(2023). https://doi.org/10.1007/s00340-023-08043-6

    [35] S. W. Zamir et al. Learning enriched features for real image restoration and enhancement, 492-511(2020).

    [36] T. Plotz, S. Roth. Benchmarking denoising algorithms with real photographs, 1586-1595(2017).

    [37] A. Abdelhamed, S. Lin, M. S. Brown. A high-quality denoising dataset for smartphone cameras, 1692-1700(2018).

    [38] T. Tahara et al. Superresolution of interference fringes in parallel four-step phase-shifting digital holography. Opt. Lett., 39, 1673-1676(2014). https://doi.org/10.1364/OL.39.001673

    Tatsuki Tahara, Tomoyoshi Shimobaba, Yuichi Kozawa, Mohamad Ammar Alsherfawi Aljazaerly, Tomoya Nakamura, "Natural-light full-color motion-picture holography," Adv. Photon. Nexus 4, 036006 (2025)
    Download Citation