• Frontiers of Optoelectronics
  • Vol. 7, Issue 2, 243 (2014)
Yuting W. CHEN1、* and Xi-Cheng ZHANG2
Author Affiliations
  • 1IBM Corporations, Poughkeepsie, NY 12538, USA
  • 2The Institute of Optics, University of Rochester, Rochester, NY 14627-0186, USA
  • show less
    DOI: 10.1007/s12200-013-0377-z Cite this Article
    Yuting W. CHEN, Xi-Cheng ZHANG. Anti-reflection implementations for terahertz waves[J]. Frontiers of Optoelectronics, 2014, 7(2): 243 Copy Citation Text show less
    References

    [1] Englert C R, Birk M, Maurer H. Antireflection coated, wedged, single-crystal silicon aircraft window for the far-infrared. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(4): 1997–2003

    [2] Gatesman A J,Waldman J, Ji M, Musante C, Yangvesson S. An antireflection coating for silicon optics at terahertz frequencies. IEEE Microwave and Guided Wave Letters, 2000, 10(7): 264–266

    [3] McKnight S W, Stewart K P, Drew H D, Moorjani K. Wavelengthindependent anti-interference coating for the far-infrared. Infrared Physics, 1987, 27(5): 327–333

    [4] Kroll J, Darmo J, Unterrainer K. Metallic wave-impedance matching layers for broadband terahertz optical systems. Optics Express, 2007, 15(11): 6552–6560

    [5] Thoman A, Kern A, Helm H, Walther M. Nanostructured gold films broadband terahertz antireflection coating. Physical Review B: Condensed Matter and Materials Physics, 2008, 77(19): 195405

    [6] Poitras D, Dobrowolski J A. Toward perfect antireflection coatings. 2. Theory. Applied Optics, 2004, 43(6): 1286–1295

    [7] Hosako I. Multilayer optical thin films for use at terahertz frequencies: method of fabrication. Applied Optics, 2005, 44(18): 3769–3773

    [8] Chen H T, Zhou J, O’Hara J F, Chen F, Azad A K, Taylor A J. Antireflection coating using metamaterials and identification of its mechanism. Physical Review Letters, 2010, 105(7): 073901

    [9] Bruckner C, Pradarutti B, Stenzel O, Steinkopf R, Riehemann S, Notni G, Tunnermann A. Broadband antireflective surface-relief structure for THz optics. Optics Express, 2007, 15(3): 779–789

    [10] Kuroo S, Shiraishi K, Sasho H, Yoda H, Muro K.Triangular surfacerelief grating for reduction of reflection from silicon surface in the 0.1–3 terahertz region. In: Proceedings of CLEO/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies. 2008, CThD7

    [11] Chen Y W, Han P Y, Zhang X C. Tunable broadband antireflection structures for silicon at terahertz frequency. Applied Physics Letters, 2009, 94(4): 041106

    [12] Dobrowolski J A, Poitras D, Ma P, Vakil H, Acree M. Toward perfect antireflection coatings: numerical investigation. Applied Optics, 2002, 41(16): 3075–3083

    [13] Chen M, Chang H C, Chang A S P, Lin S Y, Xi J Q, Schubert E F. Design of optical path for wide-angle gradient-index antireflection coatings. Applied Optics, 2007, 46(26): 6533–6538

    [14] Kadlec C, Kadlec F, Kuzel P, Blary K, Mounaix P. Materials with on-demand refractive indices in the terahertz range. Optics Letters, 2008, 33(19): 2275–2277

    [15] Saleh B E A, Teich M C. Fundamentals of Photonics, New Jersey: Wiley, 2007, 246–251

    [16] Dai J, Xie X, Zhang X C. Detection of broadband terahertz waves with a laser-induced plasma in gases. Physical Review Letters, 2006, 97(10): 103903

    [17] Ho I C, Guo X, Zhang X C. Design and performance of reflective terahertz air-biased-coherent-detection for time-domain spectroscopy. Optics Express, 2010, 18(3): 2872–2883

    [18] Dai J, Zhang J, Zhang W, Grischkowsky D. Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index refraction of high-resistivity, float-zone silicon. Journal of the Optical Society of America. B, Optical Physics, 2004, 21(7): 1379–1386

    [19] Loewenstein E V, Smith D R, Morgan R L. Optical constants of far infrared materials. 2: crystalline solids. Applied Optics, 1973, 12(2): 398–406

    [20] Bruckner T, Kasebier T, Pradarutti B, Riehemann S, Notni G, Kley E B, Tunnermann A. Broadband antireflective structures applied to high resistive float zone silicon in the THz spectral range. Optics Express, 2009, 17(5): 3063–3077

    Yuting W. CHEN, Xi-Cheng ZHANG. Anti-reflection implementations for terahertz waves[J]. Frontiers of Optoelectronics, 2014, 7(2): 243
    Download Citation