• Journal of the Chinese Ceramic Society
  • Vol. 52, Issue 4, 1355 (2024)
REN Xiang, LI Xiaoyang, GUO Zhongqiu, LI Peng..., HAO Jigong and LI Wei*|Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.14062/j.issn.0454-5648.20230807 Cite this Article
    REN Xiang, LI Xiaoyang, GUO Zhongqiu, LI Peng, HAO Jigong, LI Wei. Effect of Rare-Earth Ce4+ Doping on Structure and Energy Storage Properties of BCT-BZNT Ceramics[J]. Journal of the Chinese Ceramic Society, 2024, 52(4): 1355 Copy Citation Text show less
    References

    [1] WENG N, ZHANG J, WANG J, et al. Electrostatic energy storage performances of La(Ni2/3Ta1/3)O3‐modified Na0.5Bi0.5TiO3 lead‐free ceramics[J]. J Am Ceram Soc, 2023, 106(5): 2963-2971.

    [2] LI Y, TANG M ZHANG Z, et al. BaTiO3-based ceramics with high energy storage density[J]. Rare Metals, 2023, 42(4): 1261-1273.

    [3] HUANG Q, SI F, TANG B. The effect of rare-earth oxides on the energy storage performances in BaTiO3 based ceramics[J]. Ceram Int, 2022, 48(12): 17359-17368.

    [4] LONG C, ZHOU W, LIU L, et al. Achieving excellent energy storage performances and eminent charging-discharging capability in donor (1-x)BT-x(BZN-Nb) relaxor ferroelectric ceramics[J]. Chem Eng J, 2023, 459: 141490.

    [5] QIN W, ZHAO M, LI Z, et al. High energy storage and thermal stability under low electric field in Bi0.5Na0.5TiO3-modified BaTiO3-Bi(Zn0.25Ta0.5)O3 ceramics[J]. Chem Eng J, 2022, 443: 136505.

    [6] YAN F, GE G, QIAN J, et al. Gradient-structured ceramics with high cnergy storage performance and excellent stability[J]. Small, 2023, 19(6): e2206125.

    [7] WEI F, YANG Y, ZHANG L, et al. Simultaneously achieving high energy storage performance and low electrostrictive strain in BT‐based ceramics[J]. J Am Ceram Soc, 2023, 106(6): 3491-3500.

    [8] HU Y C, DANG S T, CAO J Q, et al. Improved energy storage performance of BST-BNT ceramics via composition modification[J]. Solid State Commun, 2023, 362: 115100.

    [9] HE Xinyu, GUAN Zehao, WANG Xiaozhi, et al. J Chin Ceram Soc, 2019, 47(2): 288-292.

    [10] WANG W, ZHANG L, JING R, et al. Enhancement of energy storage performance in lead-free barium titanate-based relaxor ferroelectrics through a synergistic two-step strategy design[J]. Chem Eng J, 2022, 434: 134678.

    [11] ZHANG L, PANG L, LI W, et al. Extreme high energy storage efficiency in perovskite structured (1-x)(Ba0.8Sr0.2)TiO3-xBi(Zn2/3Nb1/3)O3 (0.04≤x≤0.16) ceramics[J]. J Eur Ceram Soc, 2020, 40(8): 3343-3347.

    [12] JIANG Z, YUAN Y, YANG H, et al. Superior thermal stability and energy storage properties of (1-x)Na0.3Bi0.3Ba0.04Sr0.36TiO3-xZnTa2O6 lead-free ceramic[J]. J Alloy Compd, 2022, 906: 164345.

    [13] WANG M, XIE A, FU J, et al. Energy storage properties under moderate electric fields in BiFeO3-based lead-free relaxor ferroelectric ceramics[J]. Chem Eng J, 2022, 440: 135789.

    [14] LI Y, HAO Y, WANG X, et al. Studies of dielectric properties of rare earth (Y, Gd, Yb) doped barium titanate sintered in pure nitrogen[J]. Ferroelectrics, 2010, 407(1): 134-139.

    [15] SRIKANTH K S V, RAHUL. Enhanced electrocaloric, pyroelectric and energy storage performance of BaCexTi1-xO3 ceramics[J]. J Eur Ceram Soc, 2017, 37(13): 3927-3933.

    [16] ZENG X, LI Y, DONG J, et al. The polarization contribution and effect mechanism of Ce-doped 0.65BaTiO3-0.35Sr0.7Bi0.2TiO3 Pb-free ferroelectric ceramics for dielectric energy storage[J]. Ceram Int, 2021, 47(22): 32015-32024.

    [17] SUN M, WANG X, LI P, et al. Realizing ultrahigh breakdown strength and ultrafast discharge speed in novel barium titanate-based ceramics through multicomponent compounding strategy[J]. J Eur Ceram Soc, 2023, 43(3): 974-985.

    [18] KANG R, WANG Z, LOU X, et al. Energy storage performance of Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics with superior temperature stability under low electric fields[J]. Chem Eng J, 2021, 410: 128376.

    [19] HUONG D T M, NAM N H, VU L V, et al. Preparation and optical characterization of Eu3+-doped CaTiO3 perovskite powders[J]. J Alloy Compd, 2012, 537: 54-59.

    [20] SHI C, YAN F, GE G, et al. Significantly enhanced energy storage performances and power density in (1-x)BCZT-xSBT lead-free ceramics via synergistic optimization strategy[J]. Chem Eng J, 2021, 426(15): 130800.

    [21] HU D, PAN Z, TAN X, et al. Optimization the energy density and efficiency of BaTiO3-based ceramics for capacitor applications[J]. Chem Eng J, 2021, 409: 127375.

    [22] YIN M, BAI G, LI P, et al. Achieving ultrahigh energy storage properties with superior stability in novel (Ba(1-x)Bix)(Ti(1-x)Zn0.5xSn0.5x)O3 relaxor ferroelectric ceramics via chemical modification[J]. Chem Eng J, 2023, 460: 141724.

    [23] LI Y, LIU Y, TANG M, et al. Energy storage performance of BaTiO3-based relaxor ferroelectric ceramics prepared through a two-step process[J]. Chem Eng J, 2021, 419: 129673.

    [24] ZHOU M, LIANG R, ZHOU Z, et al. Combining high energy efficiency and fast charge-discharge capability in novel BaTiO3-based relaxor ferroelectric ceramic for energy-storage[J]. Ceram Int, 2019, 45(3): 3582-3590.

    [25] MA C, ZHANG R, ZHANG G, et al. Structural evolution and energy storage properties of Bi(Zn0.5Zr0.5)O3 modified BaTiO3-based relaxation ferroelectric ceramics[J]. J Energy Storage, 2023, 72: 108374.

    [26] REHMAN M, MANAN A, KHAN M, et al. Improved energy storage performance of Bi(Mg0.5Ti0.5)O3 modified Ba0.55Sr0.45TiO3 lead-free ceramics for pulsed power capacitors[J]. J Eur Ceram Soc, 2023, 43(6): 2426-2441.

    [27] LU Y, LI P, DU J, et al. SrTiO3-modified Bi0.5Na0.47Li0.03Ti0.99Sn0.01O3 relaxor ferroelectric ceramics with high energy storage performance[J]. Int J Appl Ceram Technol, 2023, 20(4): 2350-2359.

    [28] ZHANG X, YANG F, MIAO W, et al. Effective improved energy storage performances of Na0.5Bi0.5TiO3-based relaxor ferroelectrics ceramics by A/B-sites co-doping[J]. J Alloy Compd, 2021, 883: 160837.

    [29] SHI P, ZHU X, LOU X, et al. Tailoring ferroelectric polarization and relaxation of BNT-based lead-free relaxors for superior energy storage properties[J]. Chem Eng J, 2022, 428132612.

    [30] WANG W, TANG X, JIANG Y, et al. Modified relaxor ferroelectrics in BiFeO3-(Ba,Sr)TiO3-BiScO3 ceramics for energy storage applications[J]. Sustainable Mater Technol, 2022, 32: e00428.

    [31] BAI X, CHEN Z, ZHENG P, et al. High recoverable energy storage density in nominal (0.67-x)BiFeO3-0.33BaTiO3-xBaBi2Nb2O9 lead-free composite ceramics[J]. Ceram Int, 2021, 47(16): 23116-23123.

    [32] TANG M, YU L, WANG Y, et al. Dielectric, ferroelectric, and energy storage properties of Ba(Zn1/3Nb2/3)O3-modfied BiFeO3-BaTiO3 Pb-free relaxor ferroelectric ceramics[J]. Ceram Int, 2021, 47(3): 3780-3788.

    [33] ZHAO J, BAO S, TANG L, et al. Improved energy storage performances of lead-free BiFeO3-based ceramics via doping Sr0.7La0.2TiO3[J]. J Alloy Compd, 2022, 898: 162795.

    [34] MA J, LIN Y, YANG H, et al. Achieved high energy storage property and power density in NaNbO3-Bi(Sn0.5Ni0.5)O3 ceramics[J]. J Alloy Compd, 2021, 868: 159206.

    [35] SUN C, CHEN X, SHI J, et al. Simultaneously with large energy density and high efficiency achieved in NaNbO3-based relaxor ferroelectric ceramics[J]. J Eur Ceram Soc, 2021, 41(3): 1891-1903.

    [36] WANG X, DONG Q, PAN Y, et al. Enhanced energy storage performances of Bi(Ni1/2Sb2/3)O3 added NaNbO3 relaxor ferroelectric ceramics[J]. Ceram Int, 2022, 48(10): 13862-13868.

    [37] ZHANG S, LI W, ZHANG Y, et al. Large energy density and high efficiency achieved simultaneously in Bi(Mg0.5Hf0.5)O3-modified NaNbO3 ceramics[J]. Results Phys, 2023, 44: 106194.

    [38] NING Y, PU Y, WU C, et al. Achieving high energy storage performance below 200 kV/cm in BaTiO3-based medium-entropy ceramics[J]. Ceram Int, 2023, 49(12): 20326-20333.

    [39] WANG Q, XIE B, ZHENG Q, et al. Bi0.5Na0.5TiO3-based relaxor-ferroelectric ceramics for low-electric-field dielectric energy storage via bidirectional optimization strategy[J]. Chem Eng J, 2023, 452: 139422.

    [40] LI T, CHEN P, LI F, et al. Energy storage performance of Na0.5Bi0.5TiO3-SrTiO3 lead-free relaxors modified by AgNb0.85Ta0.15O3[J]. Chem Eng J, 2021, 406: 127151.

    [41] LI F, ZHAI J, SHEN B, et al. Multifunctionality of lead-free BiFeO3-based ergodic relaxor ferroelectric ceramics: High energy storage performance and electrocaloric effect[J]. J Alloy Compd, 2019, 803: 185-192.

    REN Xiang, LI Xiaoyang, GUO Zhongqiu, LI Peng, HAO Jigong, LI Wei. Effect of Rare-Earth Ce4+ Doping on Structure and Energy Storage Properties of BCT-BZNT Ceramics[J]. Journal of the Chinese Ceramic Society, 2024, 52(4): 1355
    Download Citation