[1] A. Kirmani, T. Hutchison, J. Davis. Looking around the corner using transient imaging. IEEE 12th International Conference on Computer Vision, 159-166(2009).
[2] T. Maeda, G. Satat, T. Swedish. Recent advances in imaging around corners. arXiv(2019).
[3] D. Faccio, A. Velten, G. Wetzstein. Non-line-of-sight imaging. Nat. Rev. Phys., 2, 318-327(2020).
[4] A. Velten, T. Willwacher, O. Gupta. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging. Nat. Commun., 3, 745(2012).
[5] M. O’Toole, D. B. Lindell, G. Wetzstein. Confocal non-line-of-sight imaging based on the light-cone transform. Nature, 555, 338-341(2018).
[6] D. B. Lindell, G. Wetzstein, M. O’Toole. Wave-based non-line-of-sight imaging using fast f-k migration. ACM Trans. Graph., 38, 116(2019).
[7] S. Xin, S. Nousias, K. N. Kutulakos. A theory of fermat paths for non-line-of-sight shape reconstruction. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 6793-6802(2019).
[8] X. Liu, I. Guillén, M. La Manna. Non-line-of-sight imaging using phasor-field virtual wave optics. Nature, 572, 620-623(2019).
[9] X. Liu, S. Bauer, A. Velten. Phasor field diffraction based reconstruction for fast non-line-of-sight imaging systems. Nat. Commun., 11, 1645(2020).
[10] Z. Ge, Y. Zhu, Y. Zhang. Dynamic speckle analysis using the event-based block matching algorithm. Proc. SPIE, 11901, 119010R(2021).
[11] W. Yang, C. Zhang, W. Jiang. None-line-of-sight imaging enhanced with spatial multiplexing. Opt. Express, 30, 5855-5867(2022).
[12] W. Chen, S. Daneau, F. Mannan. Steady-state non-line-of-sight imaging. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 6783-6792(2019).
[13] C. Saunders, J. Murray-Bruce, V. K. Goyal. Computational periscopy with an ordinary digital camera. Nature, 565, 472-475(2019).
[14] Y. Cao, R. Liang, J. Yang. Computational framework for steady-state NLOS localization under changing ambient illumination conditions. Opt. Express, 30, 2438-2452(2022).
[15] J. W. Goodman. Speckle Phenomena in Optics: Theory and Applications(2007).
[16] Y. Li, Y. Xue, L. Tian. Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media. Optica, 5, 1181-1190(2018).
[17] Y. Shi, E. Guo, L. Bai. Non-invasive imaging through scattering medium beyond the memory effect via polarization-modulation. Opt. Commun., 511, 127857(2022).
[18] I. Freund, M. Rosenbluh, S. Feng. Memory effects in propagation of optical waves through disordered media. Phys. Rev. Lett., 61, 2328-2331(1988).
[19] O. Katz, P. Heidmann, M. Fink. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nat. Photonics, 8, 784-790(2014).
[20] C. Guo, J. Liu, W. Li. Imaging through scattering layers exceeding memory effect range by exploiting prior information. Opt. Commun., 434, 203-208(2019).
[21] X. Wang, X. Jin, J. Li. Prior-information-free single-shot scattering imaging beyond the memory effect. Opt. Lett., 44, 1423-1426(2019).
[22] W. Li, B. Wang, T. Wu. Lensless imaging through thin scattering layers under broadband illumination. Photon. Res., 10, 2471-2487(2022).
[23] R. Horstmeyer, H. Ruan, C. Yang. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue. Nat. Photonics, 9, 563-571(2015).
[24] R. Cao, F. de Goumoens, B. Blochet. High-resolution non-line-of-sight imaging employing active focusing. Nat. Photonics, 16, 462-468(2022).
[25] R. Q. Fugate, D. L. Fried, G. A. Ameer. Measurement of atmospheric wavefront distortion using scattered light from a laser guide-star. Nature, 353, 144-146(1991).
[26] R. Cao, F. de Goumoens, B. Blochet. Non-line-of-sight imaging via wavefront shaping. Proc. SPIE, PC11969, PC119690H(2022).
[27] M. M. Balaji, J. Liu, D. Ahsanullah. Imaging operator in indirect imaging correlography. Opt. Express, 31, 21689-21705(2023).
[28] P. Rangarajan, F. Willomitzer, O. Cossairt. Spatially resolved indirect imaging of objects beyond the line of sight. Proc. SPIE, 11135, 111350I(2019).
[29] M. M. Balaji, J. Liu, D. Ahsanullah. The imaging operator in indirect imaging correlography. Computational Optical Sensing and Imaging, CW5B–4(2021).
[30] M. M. Balaji, A. Viswanath, P. Rangarajan. Resolving non line-of-sight (NLOS) motion using speckle. Computational Optical Sensing and Imaging, CM2E–2(2018).
[31] B. M. Smith, M. O’Toole, M. Gupta. Tracking multiple objects outside the line of sight using speckle imaging. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 6258-6266(2018).
[32] R. Deng, X. Jin, D. Du. 3D location and trajectory reconstruction of a moving object behind scattering media. IEEE Trans. Comput. Imaging, 8, 371-384(2022).
[33] Z. Ge, P. Zhang, Y. Gao. Lens-free motion analysis via neuromorphic laser speckle imaging. Opt. Express, 30, 2206-2218(2022).
[34] A. Viswanath, P. Rangarajan, D. MacFarlane. Indirect imaging using correlography. Computational Optical Sensing and Imaging, CM2E–3(2018).
[35] A. Viswanath, M. M. Balaji, P. Rangarajan, D. MacFarlane, M. P. Christensen. Indirect imaging using virtualized pattern projection. Computational Optical Sensing and Imaging, CM2E–8(2018).
[36] A. Dave, M. M. Balaji, P. Rangarajan. Foveated non-line-of-sight imaging. Computational Optical Sensing and Imaging, CTh5C–6(2020).
[37] C. A. Metzler, F. Heide, P. Rangarajan. Deep-inverse correlography: towards real-time high-resolution non-line-of-sight imaging. Optica, 7, 63-71(2020).
[38] J. Kühn, T. Colomb, F. Montfort. Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition. Opt. Express, 15, 7231-7242(2007).
[39] X. Zhang, Y. Yang, E. Lam. Noise analysis of dual-wavelength digital holographic microscopy. Computational Optical Sensing and Imaging, CTu4C–5(2019).
[40] F. Willomitzer, P. V. Rangarajan, F. Li. Fast non-line-of-sight imaging with high-resolution and wide field of view using synthetic wavelength holography. Nat. Commun., 12, 6647(2021).
[41] L. Zhu, J. B. de Monvel, P. Berto. Chromato-axial memory effect through a forward-scattering slab. Optica, 7, 338-345(2020).
[42] J. C. Dainty. Laser Speckle and Related Phenomena, 9(2013).
[43] S. Feng, C. Kane, P. A. Lee. Correlations and fluctuations of coherent wave transmission through disordered media. Phys. Rev. Lett., 61, 834-837(1988).
[44] J. W. Goodman. Statistical properties of laser speckle patterns. Laser Speckle and Related Phenomena, 9-75(1975).
[45] J. R. Fienup. Reconstruction of an object from the modulus of its Fourier transform. Opt. Lett., 3, 27-29(1978).
[46] J. R. Fienup. Phase retrieval algorithms: a personal tour. Appl. Opt., 52, 45-56(2013).
[47] G. Huang, D. Wu, J. Luo. Generalizing the Gerchberg–Saxton algorithm for retrieving complex optical transmission matrices. Photon. Res., 9, 34-42(2021).
[48] J. R. Fienup. Phase retrieval algorithms: a comparison. Appl. Opt., 21, 2758-2769(1982).
[49] L. Song, E. Y. Lam. Fast and robust phase retrieval for masked coherent diffractive imaging. Photon. Res., 10, 758-768(2022).
[50] S. Zhu, E. Guo, J. Gu. Imaging through unknown scattering media based on physics-informed learning. Photon. Res., 9, B210-B219(2021).
[51] E. Guo, Y. Wei, S. Zhu. Imaging of color targets through scattering media based on mixed speckle pattern separation. Opt. Laser Eng., 161, 107324(2023).
[52] S. Zhu, E. Guo, J. Gu. Efficient color imaging through unknown opaque scattering layers via physics-aware learning. Opt. Express, 29, 40024-40037(2021).
[53] S. Zhu, E. Guo, W. Zhang. Deep speckle reassignment: towards bootstrapped imaging in complex scattering states with limited speckle grains. Opt. Express, 31, 19588-19603(2023).
[54] S. Zheng, M. Liao, F. Wang. Non-line-of-sight imaging under white-light illumination: a two-step deep learning approach. Opt. Express, 29, 40091-40105(2021).
[55] M. Xu, J. Shi, W. Chen. A band selection method for hyperspectral image based on particle swarm optimization algorithm with dynamic sub-swarms. J. Signal Process. Syst., 90, 1269-1279(2018).
[56] P. V. Theodosopoulos, A. Abosch, M. W. McDermott. Intraoperative fiber-optic endoscopy for ventricular catheter insertion. Can. J. Neurol. Sci., 28, 56-60(2001).
[57] T. J. Allen, O. Ogunlade, E. Zhang. Large area laser scanning optical resolution photoacoustic microscopy using a fibre optic sensor. Biomed. Opt. Express, 9, 650-660(2018).
[58] J. Frascaroli, M. Tonini, S. Colombo. Automatic defect detection in epitaxial layers by micro photoluminescence imaging. IEEE Trans. Semicond. Manuf., 35, 540-545(2022).