[1] Grtzel M. Dye-Sensitized Solar Cells[J].Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2003,4(2):145-153.
Grtzel M. Dye-Sensitized Solar Cells[J].Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2003,4(2):145-153.
[2] Burschka J, Pellet N, Moon S J, et al. Sequential deposition as a route to high-performance perovskite- sensitized solar cells[J].Nature,2013,499:316-319.
Burschka J, Pellet N, Moon S J, et al. Sequential deposition as a route to high-performance perovskite- sensitized solar cells[J].Nature,2013,499:316-319.
[3] Asghar M I, Miettunen K, Halme J, et al. Review of stability for advanced dye solar cells[J].Energy & Environmental Science,2010,3:418-426.
Asghar M I, Miettunen K, Halme J, et al. Review of stability for advanced dye solar cells[J].Energy & Environmental Science,2010,3:418-426.
[4] Hod I, Zaban A. Materials and interfaces in quantum dot sensitized solar cells: challenges, advances and prospects[J].Langmuir: the ACS Journal of Surfaces and Colloids,2014,30(25):7264-7273.
Hod I, Zaban A. Materials and interfaces in quantum dot sensitized solar cells: challenges, advances and prospects[J].Langmuir: the ACS Journal of Surfaces and Colloids,2014,30(25):7264-7273.
[5] Nozik A J, Beard M C, Luther J M, et al. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells[J].Chemical Reviews,2010,110(11):6873-6890.
Nozik A J, Beard M C, Luther J M, et al. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells[J].Chemical Reviews,2010,110(11):6873-6890.
[7] Tian J J, Cao G Z. Semiconductor quantum dot-sensitized solar cells[J].Nano Reviews,2013,4:22578-22585.
Tian J J, Cao G Z. Semiconductor quantum dot-sensitized solar cells[J].Nano Reviews,2013,4:22578-22585.
[8] Wang W, Feng W L, Du J, et al. Cosensitized quantum dot solar cells with conversion effciency over 12%[J].Advanced Materials,2018,30:1705746-1-1705746-7.
Wang W, Feng W L, Du J, et al. Cosensitized quantum dot solar cells with conversion effciency over 12%[J].Advanced Materials,2018,30:1705746-1-1705746-7.
[9] Xu J, Chen Z H, Zapien J A, et al. Surface engineering of ZnO nanostructures for semiconductor-sensitized solar cells[J].Advanced Materials,2014,26(31):5337-5367.
Xu J, Chen Z H, Zapien J A, et al. Surface engineering of ZnO nanostructures for semiconductor-sensitized solar cells[J].Advanced Materials,2014,26(31):5337-5367.
[10] Zhang Q, Chou T P, Russo B, et al. Polydisperse aggregates of ZnO nanocrystallites: a method I for energy- conversion-efficiency enhancement in dye sensitized solar cells[J].Advanced Functional Materials,2008,18(11):1654-1660.
Zhang Q, Chou T P, Russo B, et al. Polydisperse aggregates of ZnO nanocrystallites: a method I for energy- conversion-efficiency enhancement in dye sensitized solar cells[J].Advanced Functional Materials,2008,18(11):1654-1660.
[11] Heo S, Sharma S K, Lee S, et al. Effects of Y contents on surface, structural, optical, and electrical properties for Y-doped ZnO thin films[J].Thin Solid Films,2014,558(17):27-30.
Heo S, Sharma S K, Lee S, et al. Effects of Y contents on surface, structural, optical, and electrical properties for Y-doped ZnO thin films[J].Thin Solid Films,2014,558(17):27-30.
[12] Sharma S K, Sudheer Pamidimarri D V, Kim D Y, et al. Y-doped zinc oxide (YZO) nanoflowers, microstructural analysis and test their antibacterial activity[J].Materials Science & Engineering C:Materials for Biological Applications,2015,53:104-110.
Sharma S K, Sudheer Pamidimarri D V, Kim D Y, et al. Y-doped zinc oxide (YZO) nanoflowers, microstructural analysis and test their antibacterial activity[J].Materials Science & Engineering C:Materials for Biological Applications,2015,53:104-110.
[13] Sun J, Tian S, Cai X, et al. Low-temperature solution synthesis of a ZnO nanorod array with a mesoporous surface mediated by cadmium Ions[J].Cryst.Eng.Comm.,2016,18:8277-8283.
Sun J, Tian S, Cai X, et al. Low-temperature solution synthesis of a ZnO nanorod array with a mesoporous surface mediated by cadmium Ions[J].Cryst.Eng.Comm.,2016,18:8277-8283.
[14] Gu Z J, Paranthaman M P, Xu J, et al. Aligned ZnO nanorod arrays grown directly on zinc foils and zinc spheres by a low-temperature oxidization method[J].ACS Nano, 2009,3(2):273-278
Gu Z J, Paranthaman M P, Xu J, et al. Aligned ZnO nanorod arrays grown directly on zinc foils and zinc spheres by a low-temperature oxidization method[J].ACS Nano, 2009,3(2):273-278
[15] Thirumoorthi M, Thomas Joseph Prakash J. Structural, morphological characteristics and optical properties of Y doped ZnO thin films by sol-gel spin coating method[J].Superlattices & Microstructures,2015,85:237-247.
Thirumoorthi M, Thomas Joseph Prakash J. Structural, morphological characteristics and optical properties of Y doped ZnO thin films by sol-gel spin coating method[J].Superlattices & Microstructures,2015,85:237-247.
[16] Kim S K, Gopi V M, Rao S S, et al. Highly efficient yttrium-doped ZnO nanorods for quantum dot-sensitized solar cells[J].Applied Surface Science,2016,365:136-142.
Kim S K, Gopi V M, Rao S S, et al. Highly efficient yttrium-doped ZnO nanorods for quantum dot-sensitized solar cells[J].Applied Surface Science,2016,365:136-142.
[17] Lu Y F, Ni H Q, Mai Z H, et al. The effects of thermal annealing on ZnO thin films grown by pulsed laser deposition[J].Journal of Applied Physics,2000,88(1):498-502.
Lu Y F, Ni H Q, Mai Z H, et al. The effects of thermal annealing on ZnO thin films grown by pulsed laser deposition[J].Journal of Applied Physics,2000,88(1):498-502.
[18] Wang H H, Baek S H, Song J J, et al. Microstructural and optical characteristics of solution-grown Ga-doped ZnO nanorod arrays[J].Nanotechnology,2008,19(7):075607(4).
Wang H H, Baek S H, Song J J, et al. Microstructural and optical characteristics of solution-grown Ga-doped ZnO nanorod arrays[J].Nanotechnology,2008,19(7):075607(4).
[19] Choi H S, Hwang T Y, Lee S H, et al. The construction of tandem dye-sensitized solar cells from chemically-derived nanoporous photoelectrodes[J].Journal of Power Sources,2015,274:937-942.
Choi H S, Hwang T Y, Lee S H, et al. The construction of tandem dye-sensitized solar cells from chemically-derived nanoporous photoelectrodes[J].Journal of Power Sources,2015,274:937-942.
[20] Xie Y L. Enhanced photovoltaic performance of hybrid solar cell using highly oriented CdS/CdSe-modified TiO2 nanorods[J].Electrochimica Acta,2013,105:137-141.
Xie Y L. Enhanced photovoltaic performance of hybrid solar cell using highly oriented CdS/CdSe-modified TiO2 nanorods[J].Electrochimica Acta,2013,105:137-141.