• Journal of the Chinese Ceramic Society
  • Vol. 51, Issue 12, 3204 (2023)
FAN Bingbing, QIU Hongchen, LI Mengru, ZHANG Shuang..., LU Keke, CHEN Yongqiang and ZHANG Rui|Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article
    FAN Bingbing, QIU Hongchen, LI Mengru, ZHANG Shuang, LU Keke, CHEN Yongqiang, ZHANG Rui. Research Progress on High-Entropy Ceramic Wave-Absorbing Materials[J]. Journal of the Chinese Ceramic Society, 2023, 51(12): 3204 Copy Citation Text show less
    References

    [1] JIA Z R, LAN D, LIN K J, et al. Progress in low-frequency microwave absorbing materials[J]. J Mater Sci Mater Electron, 2018, 29(20): 17122–17136.

    [2] JIA Z R, LIN K J, WU G L, et al. Recent progresses of high-temperature microwave-absorbing materials[J]. Nano, 2018, 13(6): 1830005.

    [3] GUO H T, WANG X, PAN F, et al. State of the art recent advances and perspectives in 2D MXene-based microwave absorbing materials: a review[J]. Nano Res, 2023: 1–39.

    [4] XU L J, LIN Z C, CHEN Y J, et al. Carbon-based cages with hollow confined structures for efficient microwave absorption: state of the art and prospects[J]. Carbon, 2023, 201: 1090–1114.

    [5] SAHOO P, SAINI L, DIXIT A. Microwave-absorbing materials for stealth application: a holistic overview[J]. Oxf Open Mater Sci, 2023, 3(1): itac012.

    [6] XIA Q S, HAN Z, ZHANG Z C, et al. High temperature microwave absorbing materials[J]. J Mater Chem C, 2023, 11(14): 4552–4569.

    [7] XU H, DENG J S, BAI Z Y, et al. Natural magnetite/coke composite: a novel promising microwave absorption material[J]. J Alloys Compd, 2023, 931: 167497.

    [8] CHEN W X, XING H L, GAO S T, et al. Bi-semiconductor heterojunction Cu9S5@VO2 microspheres with morphology regulation as broadband high-performance electromagnetic wave absorber[J]. Appl Surf Sci, 2023, 610: 155539.

    [9] WU Y, CHEN L, HAN Y X, et al. Hierarchical construction of CNT networks in aramid papers for high-efficiency microwave absorption[J]. Nano Res, 2023, 16(5): 7801–7809.

    [10] ZHOU N P, ZHANG L, WANG W Q, et al. Stereolithographically 3D printed SiC metastructure for ultrabroadband and high temperature microwave absorption[J]. Adv Mater Technol, 2023, 8(4): 2201222.

    [11] AAMLID S S, OUDAH M, ROTTLER J, et al. Understanding the role of entropy in high entropy oxides[J]. J Am Chem Soc, 2023, 145(11): 5991–6006.

    [12] XIANG H M, XING Y, DAI F Z, et al. High-entropy ceramics: present status, challenges, and a look forward[J]. J Adv Ceram, 2021, 10(3): 385–441.

    [13] ZHOU Y B, SHEN X W, QIAN T, et al. A review on the rational design and fabrication of nanosized high-entropy materials[J]. Nano Res, 2023, 16(5): 7874–7905.

    [14] YAO Y G, DONG Q, BROZENA A, et al. High-entropy nanoparticles: synthesis-structure-property relationships and data-driven discovery[J]. Science, 2022, 376(6589): eabn3103.

    [16] CAO M S, WANG X X, ZHANG M, et al. Variable-temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy[J]. Adv Mater, 2020, 32(10): 1907156.

    [17] MA Z, CAO C T, LIU Q F, et al. A new method to calculate the degree of electromagnetic impedance matching in one-layer microwave absorbers[J]. Chin Phys Lett, 2012, 29(3): 038401.

    [18] QUAN B, GU W H, SHENG J Q, et al. From intrinsic dielectric loss to geometry patterns: Dual-principles strategy for ultrabroad band microwave absorption[J]. Nano Res, 2021, 14(5): 1495–1501.

    [19] WANG Z, CHENG Z, FANG C Q, et al. Recent advances in MXenes composites for electromagnetic interference shielding and microwave absorption[J]. Compos Part A Appl Sci Manuf, 2020, 136: 105956.

    [20] WU N N, ZHAO B B, LIU J Y, et al. MOF-derived porous hollow Ni/C composites with optimized impedance matching as lightweight microwave absorption materials[J]. Adv Compos Hybrid Mater, 2021, 4(3): 707–715.

    [21] ZENG X J, CHENG X Y, YU R H, et al. Electromagnetic microwave absorption theory and recent achievements in microwave absorbers[J]. Carbon, 2020, 168: 606–623.

    [22] HANAI T. Theory of the dielectric dispersion due to the interfacial polarization and its application to emulsions[J]. Kolloid-Zeitschrift, 1960, 171(1): 23–31.

    [23] SMITH M, ANDREEV A V, SPIVAK B Z. Debye mechanism of giant microwave absorption in superconductors[J]. Phys Rev B, 2020, 101(13): 134508.

    [24] DONG J, ZHOU W C, DUAN S C, et al. Mechanical, dielectric and microwave absorption properties of carbon black (CB) incorporated SiO2f/PI composites[J]. J Mater Sci Mater Electron, 2018, 29(20): 17100–17107.

    [25] EL KAMMOUNI R, VáZQUEZ M, LEZAMA L, et al. Temperature dependence of microwave absorption phenomena in single and biphase soft magnetic microwires[J]. J Magn Magn Mater, 2014, 368: 126–132.

    [26] HU C F, ZHANG H B, LI F Z, et al. New phases’ discovery in MAX family[J]. Int J Refract Met Hard Mater, 2013, 36: 300–312.

    [27] LOW I M, ZHOU Y C. MAX phases: microstructure, properties, and applications[M].

    [29] QIAO L J, BI J Q, LIANG G D, et al. Synthesis and electromagnetic wave absorption performances of a novel (Mo0.25Cr0.25Ti0.25V0.25)3AlC2 high-entropy MAX phase[J]. J Mater Sci Technol, 2023, 137: 112–122.

    [30] BAI P W, WANG S, ZHAO B, et al. Electrically conductive and corrosion resistant MAX phases with superior electromagnetic wave shielding performance[J]. J Eur Ceram Soc, 2022, 42(16): 7414–7420.

    [31] MUSICó B, WRIGHT Q, WARD T Z, et al. Tunable magnetic ordering through cation selection in entropic spinel oxides[J]. Phys Rev Mater, 2019, 3(10): 104416.

    [32] SARKAR A, KRUK R, HAHN H. Magnetic properties of high entropy oxides[J]. Dalton Trans, 2021, 50(6): 1973–1982.

    [33] VINNIK D A, TRUKHANOV A V, PODGORNOV F V, et al. Correlation between entropy state, crystal structure, magnetic and electrical properties in M-type Ba-hexaferrites[J]. J Eur Ceram Soc, 2020, 40(12): 4022–4028.

    [34] CHEN L, LI Y B, ZHAO B, et al. Multiprincipal element M2FeC (M = Ti, V, Nb, Ta, Zr) MAX phases with synergistic effect of dielectric and magnetic loss[J]. Adv Sci, 2023, 10(10): e2206877.

    [35] ZHOU Y C, ZHAO B, CHEN H, et al. Electromagnetic wave absorbing properties of TMCs (TM=Ti, Zr, Hf, Nb and Ta) and high entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C[J]. J Mater Sci Technol, 2021, 74: 105–118.

    [36] ZENG J, ZHANG S Q, XUE J, et al. Enhanced dielectric loss and magnetic loss properties of copper oxide-nanowire-covered carbon fiber composites by porous nickel film[J]. Front Mater, 2020, 7: 00123.

    [37] HU W L, WANG L D, WU Q F, et al. Preparation, characterization and microwave absorption properties of bamboo-like β-SiC nanowhiskers by molten-salt synthesis[J]. J Mater Sci Mater Electron, 2014, 25(12): 5302–5308.

    [38] ZENG J, TAO P, WANG S, et al. Preparation and study on radar-absorbing materials of cupric oxide-nanowire-covered carbon fibers[J]. Appl Surf Sci, 2009, 255(9): 4916–4920.

    [39] WU R B, ZHOU K, YANG Z H, et al. Molten-salt-mediated synthesis of SiC nanowires for microwave absorption applications[J]. CrystEngComm, 2013, 15(3): 570–576.

    [40] XIE S, GUO X N, JIN G Q, et al. Carbon coated Co–SiC nanocomposite with high-performance microwave absorption[J]. Phys Chem Chem Phys, 2013, 15(38): 16104–16110.

    [41] WEI Y, ZHANG L, GONG C H, et al. Fabrication of TiN/carbon nanofibers by electrospinning and their electromagnetic wave absorption properties[J]. J Alloys Compd, 2018, 735: 1488–1493.

    [42] SU X L, JIA Y, WANG J B, et al. Combustion synthesis and microwave absorption property of SiC(Fe) solid solution powder under different reaction time[J]. J Mater Sci Mater Electron, 2013, 24(6): 1905–1912.

    [43] LIU Y, ZHANG Z Q, XIAO S T, et al. Preparation and properties of cobalt oxides coated carbon fibers as microwave-absorbing materials[J]. Appl Surf Sci, 2011, 257(17): 7678–7683.

    [44] ZHENG G P, YIN X W, WANG J, et al. Complex permittivity and microwave absorbing property of Si3N4–SiC composite ceramic[J]. J Mater Sci Technol, 2012, 28(8): 745–750.

    [45] HU F Y, WANG X H, BAO S, et al. Tailoring electromagnetic responses of delaminated Mo2TiC2Tx MXene through the decoration of Ni particles of different morphologies[J]. Chem Eng J, 2022, 440: 135855.

    [46] FAN B B, ANSAR M T, CHEN Q Q, et al. Microwave-assisted hydrothermal synthesis of 2D/2D MoS2/Ti3C2Tx heterostructure for enhanced microwave absorbing performance[J]. J Alloys Compd, 2022, 923: 166253.

    [47] HOU Y, CHENG L F, ZHANG Y N, et al. Electrospinning of Fe/SiC hybrid fibers for highly efficient microwave absorption[J]. ACS Appl Mater Interfaces, 2017, 9(8): 7265–7271.

    [48] ZHAO D L, LUO F, ZHOU W C. Microwave absorbing property and complex permittivity of nano SiC particles doped with nitrogen[J]. J Alloys Compd, 2010, 490(1–2): 190–194.

    [49] WANG Y C, WEN Z L, LONG L, et al. Dielectric response and microwave absorption properties of SiC whisker-coated carbon fibers[J]. J Mater Sci Mater Electron, 2019, 30(16): 15075–15083.

    [50] KUMAR R, CHOUDHARY H K, PAWAR S P, et al. Carbon encapsulated nanoscale iron/iron-carbide/graphite particles for EMI shielding and microwave absorption[J]. Phys Chem Chem Phys, 2017, 19(34): 23268–23279.

    [51] NIU H H, TU X Y, ZHANG S, et al. Engineered core-shell SiO2@Ti3C2Tx composites: towards ultra-thin electromagnetic wave absorption materials[J]. Chem Eng J, 2022, 446: 137260.

    [52] QIANG C W, XU J C, ZHANG Z Q, et al. Magnetic properties and microwave absorption properties of carbon fibers coated by Fe3O4 nanoparticles[J]. J Alloys Compd, 2010, 506(1): 93–97.

    [53] ZHOU Y L, MUHAMMAD J, ZHOU T H, et al. Incorporation of magnetic component to construct (TiC/Ni)@C ternary composite with heterogeneous interface for enhanced microwave absorption[J]. J Alloys Compd, 2019, 778: 779–786.

    [54] ZHOU W, LONG L, XIAO P, et al. Silicon carbide nano-fibers in situ grown on carbon fibers for enhanced microwave absorption properties[J]. Ceram Int, 2017, 43(7): 5628–5634.

    [55] WANG P, CHENG L F, ZHANG Y N, et al. Synthesis of SiC nanofibers with superior electromagnetic wave absorption performance by electrospinning[J]. J Alloys Compd, 2017, 716: 306–320.

    [56] SAHNOUN M, DAUL C, PARLEBAS J C, et al. Electronic structure and optical properties of TaC from the first principles calculation[J]. Eur Phys J B, 2005, 44(3): 281–286.

    [57] WANG W L, SUN G X, SUN X N, et al. Electromagnetic wave absorbing properties of high-entropy transition metal carbides powders[J]. Mater Res Bull, 2023, 163: 112212.

    [60] LI S H, SUN W W, LUO Y, et al. Pushing the limit of thermal conductivity of MAX borides and MABs[J]. J Mater Sci Technol, 2022, 97: 79–88.

    [61] KOTA S, WANG W Z, LU J, et al. Magnetic properties of Cr2AlB2, Cr3AlB4, and CrB powders[J]. J Alloys Compd, 2018, 767: 474–482.

    [62] ZHANG H M, ZHAO B A, XIANG H M, et al. Electromagnetic wave absorbing properties of Cr2AlB2 powders and the effect of high-temperature oxidation[J]. J Am Ceram Soc, 2021, 104(5): 2213–2224.

    [63] ZHANG W M, ZHAO B, XIANG H M, et al. One-step synthesis and electromagnetic absorption properties of high entropy rare earth hexaborides (HE REB6) and high entropy rare earth hexaborides/borates (HE REB6/HE REBO3) composite powders[J]. J Adv Ceram, 2021, 10(1): 62–77.

    [64] ZHANG W M, DAI F Z, XIANG H M, et al. Enabling highly efficient and broadband electromagnetic wave absorption by tuning impedance match in high-entropy transition metal diborides (HE TMB2)[J]. J Adv Ceram, 2021, 10(6): 1299–1316.

    [65] ZHANG W M, ZHAO B, NI N, et al. High entropy rare earth hexaborides/tetraborides (HE REB6/HE REB4) composite powders with enhanced electromagnetic wave absorption performance[J]. J Mater Sci Technol, 2021, 87: 155–166.

    [66] ZHAO B A, YAN Z K, DU Y Q, et al. High-entropy enhanced microwave attenuation in titanate perovskites[J]. Adv Mater, 2023, 35(11): e2210243.

    [67] JAHN H A, TELLER E, DONNAN F G. Stability of polyatomic molecules in degenerate electronic states-I—orbital degeneracy[J]. Proc R Soc Lond A, 1937, 161(905): 220–235.

    [68] MTOUGUI S, EL HOUSNI I, EL MEKKAOUI N, et al. Magnetic properties of La2CuMnO6 double perovskite ceramic investigated by Monte Carlo simulations[J]. Chin Phys B, 2020, 29(5): 056101.

    [69] AGUADO F, RODRIGUEZ F, Nú?EZ P. Pressure-induced Jahn-Teller suppression and simultaneous high-spin to low-spin transition in the layered perovskite CsMnF4[J]. Phys Rev B, 2007, 76(9): 094417.

    [70] RADO? A, HAWE?EK ?, ?UKOWIEC D, et al. Dielectric and electromagnetic interference shielding properties of high entropy (Zn, Fe, Ni, Mg, Cd)Fe2O4 ferrite[J]. Sci Rep, 2019, 9: 20078.

    [71] ZHANDUN V S. The magnetic, electronic, optical, and structural properties of the AB2O4 (A = Mn, Fe, Co; B = Al, Ga, In) spinels: Ab initio study[J]. J Magn Magn Mater, 2021, 533: 168015.

    [72] XIE X B, WANG B L, WANG Y K, et al. Spinel structured MFe2O4 (M = Fe, Co, Ni, Mn, Zn) and their composites for microwave absorption: a review[J]. Chem Eng J, 2022, 428: 131160.

    [73] MA J B, ZHAO B, XIANG H M, et al. High-entropy spinel ferrites MFe2O4 (M = Mg, Mn, Fe, Co, Ni, Cu, Zn) with tunable electromagnetic properties and strong microwave absorption[J]. J Adv Ceram, 2022, 11(5): 754–768.

    [74] ZHAO B A, DU Y Q, YAN Z K, et al. Structural defects in phase-regulated high-entropy oxides toward superior microwave absorption properties[J]. Adv Funct Materials, 2023, 33(1): 2209924.

    [75] YAN Z K, LI D P, ZHANG X, et al. Dual-phase high-entropy (FeCoNiZn)xV2Oy oxides with promising microwave absorption properties[J]. Ceram Int, 2022, 48(24): 36871–36879.

    [77] DAI G H, DENG R X, ZHANG T, et al. Quantitative evaluation of loss capability for in situ conductive phase enhanced microwave absorption of high-entropy transition metal oxides[J]. Adv Funct Mater, 2022, 32(35): 2205325.

    [78] HOSSEINI MOHAMMADABADI F, MASOUDPANAH S M, ALAMOLHODA S, et al. Electromagnetic microwave absorption properties of high entropy spinel ferrite ((MnNiCuZn)1?xCoxFe2O4)/ graphene nanocomposites[J]. J Mater Res Technol, 2021, 14: 1099–1111.

    [79] CHEN H, ZHAO B, ZHAO Z F, et al. Achieving strong microwave absorption capability and wide absorption bandwidth through a combination of high entropy rare earth silicide carbides/rare earth oxides[J]. J Mater Sci Technol, 2020, 47: 216–222.

    FAN Bingbing, QIU Hongchen, LI Mengru, ZHANG Shuang, LU Keke, CHEN Yongqiang, ZHANG Rui. Research Progress on High-Entropy Ceramic Wave-Absorbing Materials[J]. Journal of the Chinese Ceramic Society, 2023, 51(12): 3204
    Download Citation