• Matter and Radiation at Extremes
  • Vol. 2, Issue 2, 69 (2017)
Yongsheng Li1、2、*, Chuanlei Zhai1, Guoli Ren1, Jianfa Gu1, Wenyi Huo1, Xujun Meng1, Wenhua Ye1、3, Ke Lan1、3、4, and Weiyan Zhang5
Author Affiliations
  • 1Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
  • 2Graduate School, China Academy of Engineering Physics, Beijing 100088, China
  • 3Center for Applied Physics and Technology, Peking University, Beijing 100871, China
  • 4Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China
  • 5China Academy of Engineering Physics, Mianyang 621900, China
  • show less
    DOI: 10.1016/j.mre.2016.12.001 Cite this Article
    Yongsheng Li, Chuanlei Zhai, Guoli Ren, Jianfa Gu, Wenyi Huo, Xujun Meng, Wenhua Ye, Ke Lan, Weiyan Zhang. P2 asymmetry of Au's M-band flux and its smoothing effect due to high-Z ablator dopants[J]. Matter and Radiation at Extremes, 2017, 2(2): 69 Copy Citation Text show less
    References

    [1] J. Lindl, Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain, Phys. Plasmas 2 (1995) 3933.

    [2] J.D. Lindl, P. Amendt, R.L. Berger, S.G. Glendinning, S.H. Glenzer, et al., The physics basis for ignition using indirect-drive targets on the National Ignition Facility, Phys. Plasmas 11 (2004) 339.

    [3] S. Atzeni, J. Meyer-ter-Vehn, The Physics of Ineritial Fusion, Clarendon, Oxford, 2004.

    [4] G.H. Miller, E.I. Moses, C.R. Wuest, The National Ignition Facility: enabling fusion ignition for the 21st century, Nucl. Fusion 44 (2004) S228.

    [5] D.S. Clark, D.E. Hinkel, D.C. Eder, O.S. Jones, S.W. Haan, et al., Detailed implosion modeling of deuterium-tritium layered experiments on the National Ignition Facility, Phys. Plasmas 20 (2013) 056318.

    [6] D.S. Clark, M.M. Marinak, C.R. Weber, D.C. Eder, S.W. Haan, et al., Radiation hydrodynamics modeling of the highest compression inertial confinement fusion ignition experiment from the National Ignition Campaign, Phys. Plasmas 22 (2015) 022703.

    [7] John Lindl, Otto Landen, John Edwards, Ed Moses, NIC team, Review of the National Ignition Campaign 2009e2012, Phys. Plasmas 21 (2014) 020501.

    [8] E.I. Moses, R.E. Bonanno, C.A. Haynam, R.L. Kauffman, B.J. MacGowan, et al., The National Ignition Facility: Path to ignition in the laboratory, J. Phys. IV 133 (2006) 57.

    [9] T.R. Dittrich, O.A. Hurricane, D.A. Callahan, E.L. Dewald, T. D€oppner, et al., Design of a high-foot high-adiabat ICF capsule for the National Ignition Facility, Phys. Rev. Lett. 112 (2014) 055002.

    [10] H.-S. Park, O.A. Hurricane, D.A. Callahan, D.T. Casey, E.L. Dewald, et al., High-adiabat high-foot inertial confinement fusion implosion experiments on the National Ignition Facility, Phys. Rev. Lett. 112 (2014) 055001.

    [11] O.A. Hurricane, D.A. Callahan, D.T. Casey, E.L. Dewald, T.R. Dittrich, et al., The high-foot implosion campaign on the National Ignition Facility, Phys. Plasmas 21 (2014) 056314.

    [12] A.B. Zylstra, J.A. Frenje, F.H. Seguin, J.R. Rygg, A. Kritcher, et al., Inflight observations of low-mode R asymmetries in NIF implosions, Phys. Plasmas 22 (2015) 056301.

    [13] V.A. Smalyuk, H.F. Robey, T. D€oppner, O.S. Jones, J.L. Milovich, et al., First results of radiation-driven, layered deuterium-tritium implosions with a 3-shock adiabat-shaped drive at the National Ignition Facility, Phys. Plasmas 22 (2015) 080703.

    [14] T. Ma, P.K. Patel, N. Izumi, P.T. Springer, M.H. Key, et al., Thin shell, high velocity inertial confinement fusion implosions on the National Ignition Facility, Phys. Rev. Lett. 111 (2013) 085004.

    [15] R.H.H. Scott, D.S. Clark, D.K. Bradley, D.A. Callahan, M.J. Edwards, et al., Numerical modeling of the sensitivity of X-ray drive implosions to low-mode flux asymmetries, Phys. Rev. Lett. 110 (2013) 075001.

    [16] R.P.J. Town, D.K. Bradley, A. Kritcher, O.S. Jones, J.R. Rygg, et al., Dynamic symmetry of indirectly driven inertial confinement fusion capsules on the National Ignition Facility, Phys. Plasmas 21 (2014) 056313.

    [17] R. Tommasini, J.E. Field, B.A. Hammel, O.L. Landen, S.W. Haan, et al., Tent-induced perturbations on areal density of implosions at the National Ignition Facility, Phys. Plasmas 22 (2015) 056315.

    [18] S.R. Nagel, S.W. Haan, J.R. Rygg, M. Barrios, L.R. Benedetti, et al., Effect of the mounting membrane on shape in inertial confinement fusion implosions, Phys. Plasmas 22 (2015) 022704.

    [19] O.A. Hurricane, D. A.Callahan, D.T. Casey, E.L. Dewald, T.T. Dittrich, et al., Inertially confined fusion plasmas dominated by alpha-particle self-heating, Nat. Phys. 12 (2016) 800-806.

    [20] N.K. Gupta, V. Kumar, Angular dependence of M and N band radiation and the effect of angular anisotropy on the total conversion efficiency of X rays emitted from a laser irradiated gold foil, Laser Part. Beams 13 (1995) 389.

    [21] J.-Y. Zhou, T.-X. Huang, M. Lin, W. Jiang, Angular distribution measurement and simulation of M band X-ray from the half-hohlraum, Acta Phys. Sin. 59 (2010) 1913.

    [22] Q. Li, L. Yao, L.F. Jing, Z.M. Hu, C.W. Huang, et al., Fluorescence based imaging for M-band drive symmetry measurement in hohlraum, Phys. Plasmas 23 (2016) 112707.

    [23] S.W. Haan, J.D. Lindl, D.A. Callahan, D.S. Clark, J.D. Salmonson, et al., Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility, Phys. Plasmas 18 (2011) 051001.

    [24] P.A. Amendt, H.F. Robey, H.-S. Park, R.E. Tipton, R.E. Turner, et al., Hohlraum-driven ignition-like double-shell implosions on the Omega Laser Facility, Phys. Rev. Lett. 94 (2005) 065004.

    [25] W.S. Varnum, N.D. Delamater, S.C. Evans, P.L. Gobby, J.E. Moore, et al., Progress toward ignition with noncryogenic double-shell capsules, Phys. Rev. Lett. 22 (2000) 5153.

    [26] Y.S. Li, J.F. Gu, C.S. Wu, P. Song, Z.S. Dai, et al., Effects of the P2 Mband flux asymmetry of laser-driven gold hohlraums on the implosion of ICF ignition capsule, Phys. Plasmas 23 (2016) 072705.

    [27] L. Rayleigh, Scientific Papers II, Cambridge University Press, Cambridge, England, 1900, p. 200.

    [28] G. Taylor, The instability of liquid surfaces when accelerated in a direction perpendicular to their planes, Proc. R. Soc. Lond. Ser. A 201 (1950) 192.

    [29] R.D. Richtmyer, Taylor instability in shock acceleration of compressible fluids, Commun. Pure Appl. Math. 13 (1960) 297.

    [30] E.E. Meshkov, Instability of the interface of two gases accelerated by a shock wave, Fluid Dyn. 4 (5) (1969) 101.

    [31] H. Duan, C.S. Wu, W.B. Pei, S.Y. Zou, Theoretical study of symmetry of flux onto a capsule, Phys. Plasmas 22 (2015) 092704.

    [32] D.S. Clark, C.R. Weber, V.A. Smalyuk, H.F. Robey, A.L. Kritcher, et al., Mitigating the impact of hohlraum asymmetries in National Ignition Facility implosions using capsule shims, Phys. Plasmas 23 (2016) 072707.

    [33] J.F. Gu, Z.S. Dai, P. Song, S.Y. Zou, W.H. Ye, Asymmetric-shell ignition capsule design to tune the low-mode asymmetry during the peak drive, Phys. Plasmas 23 (2016) 082703.

    [34] K. Lan, J. Liu, D.X. Lai, W.D. Zheng, X.T. He, High flux symmetry of the spherical hohlraum with octahedral 6LEHs at the hohlraum-tocapsule radius ratio of 5.14, Phys. Plasmas 21 (2014) 010704.

    [35] K. Lan, W.D. Zheng, Novel spherical hohlraum with cylindrical laser entrance holes and shields, Phys. Plasmas 21 (2014) 090704.

    [36] K. Lan, J. Liu, Z.C. Li, X.F. Xie, W.Y. Huo, et al., Progress in octahedral spherical hohlraum study, Matter Radiat. Extrem. 1 (2016) 8.

    [37] W.Y. Huo, Z.C. Li, Y.H. Chen, X.F. Xie, K. Lan, et al., First investigation on the radiation field of the spherical hohlraum, Phys. Rev. Lett. 117 (2016) 025002.

    [38] D.H. Munro, P.M. Celliers, G.W. Collins, D.M. Gold, L.B. Da Silva, et al., Shock timing technique for the National Ignition Facility, Phys. Plasmas 8 (2001) 2245.

    [39] P. Song, C.L. Zhai, S.G. Li, H. Yong, J. Qi, et al., LARED-integration code for numerical simulation of the whole process of the indirect-drive laser inertial confinement fusion, High Power Laser Part. Beams 27 (2015) 032007.

    [40] Z.F. Fan, S.P. Zhu, W.B. Pei, W.H. Ye, M. Li, et al., Numerical investigation on the stabilization of the deceleration phase Rayleigh-Taylor instability due to alpha particle heating in ignition target, EPL 99 (2012) 65003.

    [41] Z.F. Fan, X.T. He, J. Liu, G.L. Ren, B. Liu, et al., A wedged-peak pulse design with medium fuel adiabat for indirect-drive fusion, Phys. Plasmas 21 (2014) 100705.

    [42] T. Feng, D. Lai, Y. Xu, An artificial-scattering iteration method for calculating multigroup radiation transfer problems, Chin. J. Comput. Phys. 16 (1999) 199.

    [43] W.H. Ye, W.Y. Zhang, X.T. He, Stabilization of ablative Rayleigh-Taylor instability due to change of the Atwood number, Phys. Rev. E 65 (2002) 057401.

    [44] L.F. Wang, C. Xue, W.H. Ye, Y.J. Li, Destabilizing effect of density gradient on the Kelvin-Helmholtz instability, Phys. Plasmas 16 (2009) 112104.

    [45] L.F. Wang, W.H. Ye, Y.J. Li, Interface width effect on the classical Rayleigh-Taylor instability in the weakly nonlinear regime, Phys. Plasmas 17 (2010) 052305.

    [46] J.F. Gu, Z.S. Dai, Z.F. Fan, S.Y. Zou, W.H. Ye, et al., A new metric of the low-mode asymmetry for ignition target designs, Phys. Plasmas 21 (2014) 012704.

    [47] J.F. Gu, Z.S. Dai, S.Y. Zou, P. Song, W.H. Ye, et al., New tuning method of the low-mode asymmetry for ignition capsule implosions, Phys. Plasmas 22 (2015) 122704.

    [48] F.J.D. Serduke, E. Minguez, S.J. Davidson, C.A. Iglesias, Experimental results on line shifts from dense plasmas, J. Quant. Spectrosc. Radiat. Transf. 65 (2000) 527.

    [49] Y.S. Li, W.Y. Huo, K. Lan, A novel method for determining the M-band fraction in laser-driven gold hohlraums, Phys. Plasmas 18 (2011) 022701.

    [50] J.F. Gu, S.Y. Zou, Y.S. Li, Z.S. Dai, W.H. Ye, Sensitivity study of ignition capsule implosion performance on the hard X-ray spectral distribution of hohlraum, Phys. Plasmas 19 (2012) 122710.

    [51] H.F. Robey, T.S. Perry, H.-S. Park, P. Amendt, C.M. Sorce, et al., Experimental measurements of Au M-band flux in indirectly driven double-shell implosions, Phys. Plasmas 12 (2005) 072701.

    [52] M.J.May, M.B. Schneider, S.B.Hansen, H.-K.Chung,D.E.Hinkel, et al.,Xray spectral measurements and collisional radiative modeling of hot, high-Z plasmas at the OMEGA laser, High Energy Density Phys. 4 (2008) 78-87.

    [53] G.I. Bell, Taylor Instability on Cylinders and Spheres in the Small Amplitude Approximation, Los Alamos Scientific Laboratory, Report No. LA-1321, 1951.

    [54] M.S. Plesset, On the stability of fluid flows with spherical symmetry, J. Appl. Phys. 25 (1954) 96.

    [55] A.L. Velikovich, P.F. Schmit, Bell-Plesset effects in Rayleigh-Taylor instability of finite-thickness spherical and cylindrical shells, Phys. Plasmas 22 (2015) 122711.

    [56] L.F. Wang, J.F. Wu, H.Y. Guo, W.H. Ye, J. Liu, et al., Weakly nonlinear Bell-Plesset effects for a uniformly converging cylinder, Phys. Plasmas 22 (2015) 082702.

    Yongsheng Li, Chuanlei Zhai, Guoli Ren, Jianfa Gu, Wenyi Huo, Xujun Meng, Wenhua Ye, Ke Lan, Weiyan Zhang. P2 asymmetry of Au's M-band flux and its smoothing effect due to high-Z ablator dopants[J]. Matter and Radiation at Extremes, 2017, 2(2): 69
    Download Citation