• Acta Photonica Sinica
  • Vol. 50, Issue 12, 1222004 (2021)
Jie LI, Hui LUO, Jincheng LI, and Hanping WU*
Author Affiliations
  • Institute of Optoelectronic System Technology, Wuhan Institute of Technology, Wuhan 430205, China
  • show less
    DOI: 10.3788/gzxb20215012.1222004 Cite this Article
    Jie LI, Hui LUO, Jincheng LI, Hanping WU. Design of Airborne Infrared Dual-band Imaging Optical System Based on Harmonic Diffraction and Free-form Surface[J]. Acta Photonica Sinica, 2021, 50(12): 1222004 Copy Citation Text show less
    Design example of RC optical system
    Fig. 1. Design example of RC optical system
    Design example of Schmidt- Cassegrain optical system
    Fig. 2. Design example of Schmidt- Cassegrain optical system
    Design example of off-axis three-mirror optical system
    Fig. 3. Design example of off-axis three-mirror optical system
    Mathematical model of structure control
    Fig. 4. Mathematical model of structure control
    The structure of the optimized system
    Fig. 5. The structure of the optimized system
    The MTF of the optimized system
    Fig. 6. The MTF of the optimized system
    Point diagram of the optimized system
    Fig. 7. Point diagram of the optimized system
    The in-circle energy of the optimized system
    Fig. 8. The in-circle energy of the optimized system
    Field curvature and distortion of the optimized system
    Fig. 9. Field curvature and distortion of the optimized system
    Seidel aberration diagram of the optimized system
    Fig. 10. Seidel aberration diagram of the optimized system
    The MTF of the system at different temperatures in the 3~5 μm band
    Fig. 11. The MTF of the system at different temperatures in the 3~5 μm band
    The MTF of the system at different temperatures in the 8~12 μm band
    Fig. 12. The MTF of the system at different temperatures in the 8~12 μm band
    Technical indexIndex requirements
    Focal length1 200±5 mm
    Effective caliber300±5 mm
    Working bandMedium wave/long wave
    Half field of view≥2°
    Root Mean Square (RMS) of the radius of the diffuse spot≤25 μm
    Modulation Transfer Function (MTF)Medium/long wave bands are both greater than 0.4(10 lp/mm)
    Operating temperature-60℃~+60℃
    Total length of the system≤750 mm
    Table 1. Main technical indicators of the system
    Design wavelength/μm81012
    p=2Resonance order234567234567234567
    Resonance wavelength/μm85.343.22.72.2106.7543.32.91286543.4
    p=3Resonance order234567234567234567
    Resonance wavelength/μm12864.843.415107.5654.2181297.265.1
    Table 2. Resonant wavelengths of different design wavelengths
    MaterialDensity/(g·  cm-2Elastic modmodulus/GPaSpecific modulus of elasticity/(×109N·mm·g-1Thermal conductivity/(W·m-1·K-1Thermal expansion coefficien/(×1016·K-1Thermal deformation coefficient/×108m·W-1
    SiC3.0540012.61852.51.4
    Be1.8528015.116011.47.2
    Low-expansion glass-ceramic2.5923.71.460.053
    Low expansion fused silica2.2673.11.30.032.3
    Table 3. Performance of optional mirror substrate materials
    MaterialTransmission band/μmTheoretical transmittance/%Refractive index nElastic modulus/GPaThermal conductivity/(W·m-1·K-1Thermal expansion coefficient/(×1016·K-1Knoop hardness/(kg·mm-2Breaking strength/MPa
    Si1.1~953.93.426130.91

    596 (125 K)

    163 (313 K)

    105.1 (400 K)

    -0.5 (75 K)

    2.5 (293 K)

    4.6 (1400 K)

    1 15070~340
    Ge1.8~2347.14.003 2103

    165.8 (125K)

    59 (293 K)

    43.95 (400 K)

    2.4 (100 K)

    6.1 (298 K)

    8.0 (1 200 K)

    78090~100
    Standard ZnS1-13752.2074.517 (296 K)

    4.6 (173 K)

    6.6 (273 K)

    7.7 (473 K)

    230~25097.95
    Standard ZnSe0.5~20712.4070.318 (300 K)

    5.6 (173 K)

    7.1 (273 K)

    8.3 (293 K)

    10552.55
    GaAs0.9~1555.853.27682.6855 (300 K)

    0.9 (75 K)

    5.7 (300 K)

    7.3 (1 000 K)

    -130
    CaF20.13~12941.4375.798.418.715837
    Table 4. Performance analysis of optional refractive/refractive diffractive lens materials
    OperandSurface1Surface2ValueMinimumMaximum
    COMP16-50-5050
    TWAV4(10)
    TRAD3-1999.900-0.020.02
    TRAD6-666.652-0.020.02
    TRAD9-999.950-0.020.02
    TRAD112728.675-0.20.2
    TRAD122406.081-0.20.2
    TRAD131054.373-0.20.2
    TRAD14916.156-0.20.2
    TRAD151439.644-0.20.2
    TRAD161112.167-0.20.2
    TETX33-0.0180.018
    TETX66-0.0180.018
    TETX99-0.0180.018
    TTHI12600.000-0.20.2
    TTHI45-499.975-0.20.2
    TTHI78499.975-0.20.2
    TTHI1012-600.000-0.20.2
    TTHI1112-13.166-0.20.2
    TTHI1214-11.801-0.20.2
    TTHI1314-13.855-0.20.2
    TTHI1416-27.165-0.20.2
    TTHI1516-23.399-0.20.2
    Table 5. Final tolerance distribution
    Test wavelength/μmNomimol/μmBest/μmThe surface for the best resultsWorst/μmThe surface of the worst results90%>/μm80%>/μm50%>/μm20%>/μm10%>/μm
    49.9329.9661128.9641924.03222.08915.79611.90711.544
    109.0769.839331.1871422.77019.86314.09511.40311.012
    Table 6. Tolerance analysis results
    The main parametersTechnical indexDesign result
    System focal length/mm1 200±51 200
    Effective caliber/mm300±5300
    Half field of view/(°)≥±2±2
    Working band/μmMedium wave/long wave3~5 μm/8~12 μm
    MTF@10 lp/mm≥0.4

    ≥0.6(3~5 μm)

    ≥0.45(8~12 μm)

    Diffuse spot radius(RMS)/μm≤25

    18.335(3~5 μm)

    15.811(8~12 μm)

    Table 7. Comparison of design results and corresponding technical indicators
    Jie LI, Hui LUO, Jincheng LI, Hanping WU. Design of Airborne Infrared Dual-band Imaging Optical System Based on Harmonic Diffraction and Free-form Surface[J]. Acta Photonica Sinica, 2021, 50(12): 1222004
    Download Citation