• Photonics Research
  • Vol. 13, Issue 2, 351 (2025)
Jia Shi1,2,*, Guanlong Wang1, Longhuang Tang3,4, Xiang Wang3..., Shaona Wang1, Cuijuan Guo1, Hua Bai1, Pingjuan Niu1, Jianquan Yao2 and Jidong Weng3|Show fewer author(s)
Author Affiliations
  • 1Tianjin Key Laboratory of Optoelectronic Detection Technology and System, School of Electronic and Information Engineering, Tiangong University, Tianjin 300387, China
  • 2Key Laboratory of Opto-Electronics Information Technology (Ministry of Education), School of Precision Instruments and Opto-Electronic Engineering, Tianjin University, Tianjin 300072, China
  • 3Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China
  • 4e-mail: tanglonghuang@tju.edu.cn
  • show less
    DOI: 10.1364/PRJ.542798 Cite this Article Set citation alerts
    Jia Shi, Guanlong Wang, Longhuang Tang, Xiang Wang, Shaona Wang, Cuijuan Guo, Hua Bai, Pingjuan Niu, Jianquan Yao, Jidong Weng, "High-efficiency focusing metalens based on metagrating arrays," Photonics Res. 13, 351 (2025) Copy Citation Text show less
    References

    [1] T. Nagatsuma, G. Ducournau, C. C. Renaud. Advances in terahertz communications accelerated by photonics. Nat. Photonics, 10, 371-379(2016).

    [2] P. F.-X. Neumaier, K. Schmalz, J. Borngräber. Terahertz gas-phase spectroscopy: chemometrics for security and medical applications. Analyst, 140, 213-222(2015).

    [3] J. W. Waters, L. Froidevaux, R. S. Harwood. The earth observing system microwave limb sounder (EOS MLS) on the aura satellite. IEEE Trans. Geosci. Remote Sens., 44, 1075-1092(2006).

    [4] D. M. Mittleman, R. H. Jacobsen, R. Neelamani. Gas sensing using terahertz time-domain spectroscopy. Appl. Phys. B, 67, 379-390(1998).

    [5] A. Kumar, M. Gupta, P. Pitchappa. Phototunable chip-scale topological photonics: 160 Gbps waveguide and demultiplexer for THz 6G communication. Nat. Commun., 13, 5404(2022).

    [6] K. Rouhi, S. E. Hosseininejad, S. Abadal. Multi-channel near-field terahertz communications using reprogrammable graphene-based digital metasurface. J. Lightwave Technol., 39, 6893-6907(2021).

    [7] Y. Yang, Y. Yamagami, X. Yu. Terahertz topological photonics for on-chip communication. Nat. Photonics, 14, 446-451(2020).

    [8] J. Yu, Y. Wang, J. Ding. Broadband photon-assisted terahertz communication and sensing. J. Lightwave Technol., 41, 3332-3349(2023).

    [9] S. Jia, S. Wang, K. Liu. A unified system with integrated generation of high-speed communication and high-resolution sensing signals based on THz photonics. J. Lightwave Technol., 36, 4549-4556(2018).

    [10] L. Zanotto, R. Piccoli, J. Dong. Single-pixel terahertz imaging: a review. Opto-Electron. Adv., 3, 20001201(2020).

    [11] L. Yi, Y. Nishida, T. Sagisaka. Towards practical terahertz imaging system with compact continuous wave transceiver. J. Lightwave Technol., 39, 7850-7861(2021).

    [12] Z. Yang, L. Zhang, Z. Liu. Robust photonic terahertz vector imaging scheme using an optical frequency comb. J. Lightwave Technol., 40, 2717-2723(2022).

    [13] H. T. Stinson, A. Sternbach, O. Najera. Imaging the nanoscale phase separation in vanadium dioxide thin films at terahertz frequencies. Nat. Commun., 9, 3604(2018).

    [14] H. Matsumoto, I. Watanabe, A. Kasamatsu. Integrated terahertz radar based on leaky-wave coherence tomography. Nat. Electron., 3, 122-129(2020).

    [15] W. Nsengiyumva, S. Zhong, L. Zheng. Sensing and nondestructive testing applications of terahertz spectroscopy and imaging systems: state-of-the-art and state-of-the-practice. IEEE Trans. Instrum. Meas., 72, 4507483(2023).

    [16] P. Hlosta, M. Nita, D. Powala. Terahertz radiation in non-destructive testing of composite pyrotechnic materials. Compos. Struct., 279, 114770(2022).

    [17] R. Fukasawa. Terahertz imaging: widespread industrial application in non-destructive inspection and chemical analysis. IEEE Trans. Terahertz Sci. Technol., 5, 1121-1127(2015).

    [18] C. Zhang, S.-L. Chen, T. Ling. Imprinted polymer microrings as high-performance ultrasound detectors in photoacoustic imaging. J. Lightwave Technol., 33, 4318-4328(2015).

    [19] J. Shi, Z. Guo, H. Chen. Artificial intelligence-assisted terahertz imaging for rapid and label-free identification of efficient light formula in laser therapy. Biosensors, 12, 826(2022).

    [20] X. He, X. Zhong, F. Lin. Investigation of graphene assisted tunable terahertz metamaterials absorber. Opt. Mater. Express, 6, 331-342(2016).

    [21] B. Fang, B. Li, Y. Peng. Polarization-independent multiband metamaterials absorber by fundamental cavity mode of multilayer microstructure. Microw. Opt. Technol. Lett., 61, 2385-2391(2019).

    [22] F. Balli, M. Sultan, S. K. Lami. A hybrid achromatic metalens. Nat. Commun., 11, 3892(2020).

    [23] P. Zhang, B. Fang, T. Zhao. Terahertz wave tunable metalens based on phase change material coded metasurface. J. Lightwave Technol., 41, 7162-7168(2023).

    [24] B. Fang, D. Feng, P. Chen. Broadband cross-circular polarization carpet cloaking based on a phase change material metasurface in the mid-infrared region. Front. Phys., 17, 53502(2022).

    [25] R. Xia, X. Jing, X. Gui. Broadband terahertz half-wave plate based on anisotropic polarization conversion metamaterials. Opt. Mater. Express, 7, 977-988(2017).

    [26] D. Lee, B. Oh, J. Park. Wide field-of-hearing metalens for aberration-free sound capture. Nat. Commun., 15, 3044(2024).

    [27] A. Barulin, Y. Kim, D. Oh. Dual-wavelength metalens enables Epi-fluorescence detection from single molecules. Nat. Commun., 15, 26(2024).

    [28] S. Wen, X. Xue, S. Wang. Metasurface array for single-shot spectroscopic ellipsometry. Light Sci. Appl., 13, 88(2024).

    [29] T. Badloe, I. Kim, Y. Kim. Electrically tunable bifocal metalens with diffraction-limited focusing and imaging at visible wavelengths. Adv. Sci., 8, 2102646(2021).

    [30] G.-H. Go, C. H. Park, K. Y. Woo. Scannable dual-focus metalens with hybrid phase. Nano Lett., 23, 3152-3158(2023).

    [31] Z. Huang, Y. Zheng, J. Li. High-resolution metalens imaging polarimetry. Nano Lett., 23, 10991-10997(2023).

    [32] H. Yu, Z. Cen, X. Li. Broadband achromatic and wide field of view metalens-doublet by inverse design. Opt. Express, 32, 15315-15325(2024).

    [33] H. Chung, O. D. Miller. High-NA achromatic metalenses by inverse design. Opt. Express, 28, 6945-6965(2020).

    [34] Y. Liu, Y. Zhu, H. Yin. Broadband high-efficiency plasmonic metalens with negative dispersion characteristic. Photon. Res., 12, 813-820(2024).

    [35] P. Huo, W. Chen, Z. Zhang. Observation of spatiotemporal optical vortices enabled by symmetry-breaking slanted nanograting. Nat. Commun., 15, 3055(2024).

    [36] P.-S. Huang, C. H. Chu, S.-H. Huang. Varifocal metalenses: harnessing polarization-dependent superposition for continuous focal length control. Nano Lett., 23, 10432-10440(2023).

    [37] X. He, Y. Yang, L. Deng. 3D printed sub-terahertz all-dielectric lens for arbitrary manipulation of quasi-nondiffractive orbital angular momentum waves. ACS Appl. Mater. Interfaces, 13, 20770-20778(2021).

    [38] W. T. Chen, A. Y. Zhu, J. Sisler. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat. Commun., 10, 355(2019).

    [39] X. Wang, S. Liu, L. Xu. A holographic broadband achromatic metalens. Laser Photon. Rev., 18, 2300880(2024).

    [40] F. Wang, W. Toe, W. Lee. Resolving stable axial trapping points of nanowires in an optical tweezers using photoluminescence mapping. Nano Lett., 13, 1185-1191(2013).

    [41] D. B. Phillips, D. Carberry, S. Simpson. Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking. J. Opt., 13, 044023(2011).

    [42] F. Zhao, Z. Li, S. Li. Terahertz metalens of hyper-dispersion. Photon. Res., 10, 886-895(2022).

    [43] S. Sun, K. Yang, C. Wang. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett., 12, 6223-6229(2012).

    [44] J. Zhang, M. ElKabbash, R. Wei. Plasmonic metasurfaces with 42.3% transmission efficiency in the visible. Light Sci. Appl., 8, 53(2019).

    [45] M. Khorasaninejad, A. Ambrosio, P. Kanhaiya. Broadband and chiral binary dielectric meta-holograms. Sci. Adv., 2, e1501258(2016).

    [46] A. Ndao, L. Hsu, J. Ha. Octave bandwidth photonic fishnet-achromatic-metalens. Nat. Commun., 11, 3205(2020).

    [47] W. Shi, J. Gu, X. Zhang. Terahertz bound states in the continuum with incident angle robustness induced by a dual period metagrating. Photon. Res., 10, 810-819(2022).

    [48] Y. Jia, J. Wang, Y. Han. Quasi-omnibearing retro-reflective metagrating protected by reciprocity. Photon. Res., 10, 843-854(2022).

    [49] X. Liu, W. Chen, Y. Ma. Enhancing THz fingerprint detection on the planar surface of an inverted dielectric metagrating. Photon. Res., 10, 2836-2845(2022).

    [50] S. Baek, J. Kim, Y. Kim. High numerical aperture RGB achromatic metalens in the visible. Photon. Res., 10, B30-B39(2022).

    [51] E. Khaidarov, H. Hao, R. Paniagua-Dominguez. Asymmetric nanoantennas for ultrahigh angle broadband visible light bending. Nano Lett., 17, 6267-6272(2017).

    [52] J. Liu, X. Fang, F. He. Directional conversion of a THz propagating wave into surface waves in deformable metagratings. Opt. Express, 29, 21749-21762(2021).

    [53] X. Li, Z. Liu, D. Yan. Experimental demonstration of 3D printed terahertz polarization-insensitive flat devices based on low-index meta-gratings. J. Phys. Appl. Phys., 53, 505301(2020).

    [54] J. Shi, H. Gao, X. Jia. All-dielectric tunable terahertz metagrating for diffraction control. ACS Appl. Mater. Interfaces, 14, 55174-55182(2022).

    [55] Z. Liu, X. Li, J. Yin. Asymmetric all silicon micro-antenna array for high angle beam bending in terahertz band. IEEE Photon. J., 11, 5900509(2019).

    [56] J. Shi, M. Li, L. Tang. All-dielectric integrated meta-antenna operating in 6G terahertz communication window. Small, 20, 2308958(2024).

    [57] R. Paniagua-Dominguez, Y. Yu, E. Khaidarov. A metalens with a near-unity numerical aperture. Nano Lett., 18, 2124-2132(2018).

    [58] R. A. Aoni, S. Manjunath, B. I. Karawdeniya. Resonant dielectric metagratings for response intensified optical sensing. Adv. Funct. Mater., 32, 2103143(2022).

    [59] X. Zang, W. Xu, M. Gu. Polarization-insensitive metalens with extended focal depth and longitudinal high-tolerance imaging. Adv. Opt. Mater., 8, 1901342(2019).

    [60] S. Hu, L. Wei, Y. Long. Longitudinal polarization manipulation based on all-dielectric terahertz metasurfaces. Opt. Express, 32, 6963-6976(2024).

    [61] Y. Xu, J. Gu, Y. Gao. Broadband achromatic terahertz metalens constituted by Si–SiO2–Si hybrid meta-atoms. Adv. Funct. Mater., 33, 2302821(2023).

    [62] Z. Zhang, X. Qi, J. Zhang. Graphene-enabled electrically tunability of metalens in the terahertz range. Opt. Express, 28, 28101-28112(2020).

    [63] J. Huang, H. Guan, B. Hu. Enhanced terahertz focusing for a graphene-enabled active metalens. Opt. Express, 28, 35179-35191(2020).

    [64] X. Li, Z. Shen, Q. Tan. High efficient metadevices for terahertz beam shaping. Front. Phys., 9, 659747(2021).

    [65] X. Jiang, H. Chen, Z. Li. All-dielectric metalens for terahertz wave imaging. Opt. Express, 26, 14132-14142(2018).

    [66] Q. Cheng, J. Wang, L. Ma. Achromatic terahertz Airy beam generation with dielectric metasurfaces. Nanophotonics, 10, 1123-1131(2021).

    Jia Shi, Guanlong Wang, Longhuang Tang, Xiang Wang, Shaona Wang, Cuijuan Guo, Hua Bai, Pingjuan Niu, Jianquan Yao, Jidong Weng, "High-efficiency focusing metalens based on metagrating arrays," Photonics Res. 13, 351 (2025)
    Download Citation