• Journal of the Chinese Ceramic Society
  • Vol. 52, Issue 7, 2232 (2024)
CAO Yu1,2, ZHANG Guohui1,2, WANG Changgang1,2, ZHOU Jing1,3..., CAI Yongmao4,* and ZHAO Yao5|Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • 5[in Chinese]
  • show less
    DOI: 10.14062/j.issn.0454-5648.20230552 Cite this Article
    CAO Yu, ZHANG Guohui, WANG Changgang, ZHOU Jing, CAI Yongmao, ZHAO Yao. First Principles Study of Two-Dimensional h-Mo2B2 as a Negative Electrode for Metal-Ion Batteries[J]. Journal of the Chinese Ceramic Society, 2024, 52(7): 2232 Copy Citation Text show less
    References

    [1] TIAN Y, AN Y L, FENG J K, et al. MXenes and their derivatives for advanced aqueous rechargeable batteries[J]. Mater Today, 2022, 52: 255-249.

    [2] DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935.

    [3] AN Y L, TIAN Y, WEI C L, et al. Dealloying: An effective method for scalable fabrication of 0D, 1D, 2D, 3D materials and its application in energy storage[J]. Nano Today, 2021, 37: 101094.

    [4] ZHANG X Q, DONG M F, XIONG Y L, et al. Aqueous rechargeable Li+/Na+ hybrid ion battery with high energy density and long cycle life[J]. Small, 2020, 16(41): 2003585.

    [5] CHENG Siling, LUO Wei, ZHENG Kunxiong, et al. J Chin Ceram Soc, 2022, 50(1): 2-8.

    [6] SLATER M D, KIM D, LEE E, et al. Sodium-ion batteries[J]. Adv Funct Mater, 2013, 23(8): 947-958.

    [7] KIM H, KIM J C, BIANCHINI M, et al. Recent progress and perspective in electrode materials for K-ion batteries[J]. Adv Energy Mater, 2018, 8(9): 1702384.

    [8] DOE R E, HAN R, HWANG J, et al. Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries[J]. Chem Commun, 2014, 50(2): 243-245.

    [9] AURBACH D, LU Z, SCHECHTER A, et al. Prototype systems for rechargeable magnesium batteries[J]. Nature, 2000, 407(6805): 724-727.

    [10] XIE Y, DALL’AGNESE Y, NAGUIB M, et al. Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries[J]. ACS Nano, 2014, 8(9): 9606-9615.

    [11] XU T J, WANG Y H, XIONG Z, et al. A rising 2D star: Novel MBenes with excellent performance in energy conversion and storage[J]. Nanomicro Lett, 2022, 15(1): 6.

    [12] LIU H L, CAI Y M, GUO Z D, et al. Two-dimensional V2N MXene monolayer as a high-capacity anode material for lithium-ion batteries and beyond: First-principles calculations[J]. ACS Omega, 2022, 7(21): 17756-17764.

    [13] WANG D, YU J, YIN X B, et al. A customized strategy to design intercalation-type Li-free cathodes for all-solid-state batteries[J]. Natl Sci Rev, 2023, 10(3): 183-196.

    [14] YU J, WANG D, WANG G X, et al. Breaking the electronic conductivity bottleneck of manganese oxide family for high-power fluorinated graphite composite cathode by ligand-field high-dimensional constraining strategy[J]. Adv Mater, 2023, 35(8): 2209210.

    [15] HOANG HUY V P, AHN Y N, HUR J. Recent advances in transition metal dichalcogenide cathode materials for aqueous rechargeable multivalent metal-ion batteries[J]. Nanomaterials, 2021, 11(6): 1517.

    [16] LI N, FAN J. Computational insights into modulating the performance of MXene based electrode materials for rechargeable batteries[J]. Nanotechnology, 2021, 32(25): 252001.

    [17] VAHIDMOHAMMADI A, ROSEN J, GOGOTSI Y. The world of two-dimensional carbides and nitrides (MXenes)[J]. Science, 2021, 372(6547): eabf1581.

    [18] LUKATSKAYA M R, MASHTALIR O, REN C E, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide[J]. Science, 2013, 341(6153): 1502-1505.

    [19] ZHU Hongwei, WANG Min. J Chin Ceram Soc, 2017, 45(8): 1043-1053.

    [20] BONACCORSO F, COLOMBO L, YU G H, et al. 2D materials. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage[J]. Science, 2015, 347(6217): 1246501.

    [21] WANG Z Q, WANG D, ZOU Z Y, et al. Efficient potential-tuning strategy through p-type doping for designing cathodes with ultrahigh energy density[J]. Natl Sci Rev, 2020, 7(11): 1768-1775.

    [22] WANG D, JIAO Y, SHI W, et al. Fundamentals and advances of ligand field theory in understanding structure-electrochemical property relationship of intercalation-type electrode materials for rechargeable batteries[J]. Prog Mater Sci, 2023, 133: 101055.

    [23] GUO Z L, ZHOU J, SUN Z M. New two-dimensional transition metal borides for Li ion batteries and electrocatalysis[J]. J Mater Chem A, 2017, 5(45): 23530-23535.

    [24] ZHANG H M, XIANG H M, DAI F Z, et al. First demonstration of possible two-dimensional MBene CrB derived from MAB phase Cr2AlB2[J]. J Mater Sci Technol, 2018, 34(11): 2022-2026.

    [25] WANG J J, YE T N, GONG Y T, et al. Discovery of hexagonal ternary phase Ti2InB2 and its evolution to layered boride TiB[J]. Nat Commun, 2019, 10(1): 2284.

    [26] ZHOU J, PALISAITIS J, HALIM J, et al. Boridene: Two-dimensional Mo4/3B2-x with ordered metal vacancies obtained by chemical exfoliation[J]. Science, 2021, 373(6556): 801-805.

    [27] WU Miaomiao, LIU Jiahao, WANG Kexin, et al. J Chin Ceram Soc, 2019, 47(7): 1013-1022.

    [28] BO T, LIU P F, XU J P, et al. Hexagonal Ti2B2 monolayer: A promising anode material offering high rate capability for Li-ion and Na-ion batteries[J]. Phys Chem Chem Phys, 2018, 20(34): 22168-22178.

    [29] GAO S L, HAO J B, ZHANG X H, et al. Two dimension transition metal boride Y2B2 as a promising anode in Li-ion and Na-ion batteries[J]. Comput Mater Sci, 2021, 200: 110776.

    [30] XIONG W, FENG X Y, XIAO Y, et al. Fluorine-free prepared two-dimensional molybdenum boride (MBene) as a promising anode for lithium-ion batteries with superior electrochemical performance[J]. Chem Eng J, 2022, 446: 137466.

    [31] LI R Q, LIU Y F, DENG H Q, et al. A first-principles study of MBene as anode material for Mg-ion battery[J]. J Electrochem Energy Convers Storage, 2020, 17(4): 041002.

    [32] BO T, LIU P F, ZHANG J R, et al. Tetragonal and trigonal Mo2B2 monolayers: Two new low-dimensional materials for Li-ion and Na-ion batteries[J]. Phys Chem Chem Phys, 2019, 21(9): 5178-5188.

    [33] KRESSE G, FURTHMüLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys Rev B Condens Matter, 1996, 54(16): 11169-11186.

    [34] BL?CHL P E. Projector augmented-wave method[J]. Phys Rev B Condens Matter, 1994, 50(24): 17953-17979.

    [35] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865-3868.

    [36] GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. J Chem Phys, 2010, 132(15): 154104.

    [37] GRIMME S, EHRLICH S, GOERIGK L. Effect of the damping function in dispersion corrected density functional theory[J]. J Comput Chem, 2011, 32(7): 1456-1465.

    [38] TOGO A, TANAKA I. First principles phonon calculations in materials science[J]. Scr Mater, 2015, 108: 1-5.

    [39] HENKELMAN G, ARNALDSSON A, JóNSSON H. A fast and robust algorithm for Bader decomposition of charge density[J]. Comput Mater Sci, 2006, 36(3): 354-360.

    [40] HENKELMAN G, UBERUAGA B P, JóNSSON H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. J Chem Phys, 2000, 113(22): 9901-9904.

    [41] BECKE A D, EDGECOMBE K E. A simple measure of electron localization in atomic and molecular systems[J]. J Chem , 1990, 92(9): 5397-5403.

    [42] SILVI B, SAVIN A. Classification of chemical bonds based on topological analysis of electron localization functions[J]. Nature, 1994, 371(6499): 683-686.

    [43] CHEN H, ZHANG W, TANG X Q, et al. First principles study of P-doped borophene as anode materials for lithium ion batteries[J]. Appl Surf Sci, 2018, 427: 198-205.

    [44] FAN K, YING Y R, LI X Y, et al. Theoretical investigation of V3C2 MXene as prospective high-capacity anode material for metal-ion (Li, Na, K, and Ca) batteries[J]. J Phys Chem C, 2019, 123(30): 18207-18214.

    [45] ZHANG C, TAN J Y, PAN Y K, et al. Mass production of 2D materials by intermediate-assisted grinding exfoliation[J]. Natl Sci Rev, 2020, 7(2): 324-332.

    [46] ZHANG C, LUO Y T, TAN J Y, et al. High-throughput production of cheap mineral-based two-dimensional electrocatalysts for high-current- density hydrogen evolution[J]. Nat Commun, 2020, 11(1): 3724.

    [47] GANESH P, KIM J, PARK C, et al. Binding and diffusion of lithium in graphite: Quantum Monte Carlo benchmarks and validation of van der waals density functional methods[J]. J Chem Theory Comput, 2014, 10(12): 5318-5323.

    [48] TANG Q, ZHOU Z, SHEN P W. Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X=F, OH) monolayer[J]. J Am Chem Soc, 2012, 134(40): 16909-16916.

    [49] ER D Q, LI J W, NAGUIB M, et al. Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries[J]. ACS Appl Mater Interfaces, 2014, 6(14): 11173-11179.

    [50] LI Y F, WU D H, ZHOU Z, et al. Enhanced Li adsorption and diffusion on MoS2 zigzag nanoribbons by edge effects: A computational study[J]. J Phys Chem Lett, 2012, 3(16): 2221-2227.

    [51] MORTAZAVI M, WANG C, DENG J K, et al. Ab initio characterization of layered MoS2 as anode for sodium-ion batteries[J]. J Power Sources, 2014, 268: 279-286.

    [52] YUAN G H, BO T, QI X A, et al. Monolayer Zr2B2: A promising two-dimensional anode material for Li-ion batteries[J]. Appl Surf Sci, 2019, 480: 448-453.

    [53] WEI F, XU S A, LI J J, et al. Computational investigation of two-dimensional vanadium boride compounds for Na-ion batteries[J]. ACS Omega, 2022, 7(17): 14765-14771.

    [54] MA N G, WANG T R, LI N, et al. New phases of MBenes M2B (M=Sc, Ti, and V) as high-capacity electrode materials for rechargeable magnesium ion batteries[J]. Appl Surf Sci, 2022, 571: 151275.

    CAO Yu, ZHANG Guohui, WANG Changgang, ZHOU Jing, CAI Yongmao, ZHAO Yao. First Principles Study of Two-Dimensional h-Mo2B2 as a Negative Electrode for Metal-Ion Batteries[J]. Journal of the Chinese Ceramic Society, 2024, 52(7): 2232
    Download Citation