• Chinese Physics B
  • Vol. 29, Issue 8, (2020)
Xin Zhao1, Zheng Song1, Yuan-Ji Li1、2、†, Jin-Xia Feng1、2, and Kuan-Shou Zhang1、2
Author Affiliations
  • 1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
  • 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • show less
    DOI: 10.1088/1674-1056/ab8ac4 Cite this Article
    Xin Zhao, Zheng Song, Yuan-Ji Li, Jin-Xia Feng, Kuan-Shou Zhang. High efficiency sub-nanosecond electro–optical Q-switched laser operating at kilohertz repetition frequency[J]. Chinese Physics B, 2020, 29(8): Copy Citation Text show less

    Abstract

    Based on a theoretical model of Q-switched laser with the influences of the driving signal sent to the Pockels cell and the doping concentration of the gain medium taken into account, a method of achieving high energy sub-nanosecond Q-switched lasers is proposed and verified in experiment. When a Nd:YVO4 crystal with a doping concentration of 0.7 at.% is used as a gain medium and a driving signal with the optimal high-level voltage is applied to the Pockels cell, a stable single-transverse-mode electro–optical Q-switched laser with a pulse width of 0.77 ns and a pulse energy of 1.04 mJ operating at the pulse repetition frequency of 1 kHz is achieved. The precise tuning of the pulse width is also demonstrated.
    $$ \begin{eqnarray}{\rm{d}}n/{\rm{d}}t=-\gamma nc{\sigma }_{{\rm{se}}}\phi,\end{eqnarray}$$(1)

    View in Article

    $$ \begin{eqnarray}{\rm{d}}\phi /{\rm{d}}t=nc{\sigma }_{{\rm{se}}}\phi l/{l}_{{\rm{c}}}-\phi c\varepsilon /(2{l}_{{\rm{c}}}),\end{eqnarray}$$(2)

    View in Article

    $$ \begin{eqnarray}{n}_{0}=\displaystyle \frac{{P}_{{\rm{in}}}{\tau }_{{\rm{f}}}[1-\exp (-\alpha l)]}{h{\nu }_{{\rm{p}}}}\left[1-\exp \left(-\displaystyle \frac{{T}_{{\rm{p}}}}{{\tau }_{{\rm{f}}}}\right)\right]\displaystyle \frac{{\omega }_{{\rm{l}}}^{2}}{{\omega }_{{\rm{pa}}}^{2}}\displaystyle \frac{1}{\pi {\omega }_{{\rm{pa}}}^{2}l},\end{eqnarray}$$(3)

    View in Article

    $$ \begin{eqnarray}{\phi }_{0}={n}_{0}\displaystyle \frac{l}{c{\tau }_{{\rm{f}}}}\displaystyle \frac{{\rm{d}}\varOmega }{4\pi }\exp \left(\displaystyle \frac{\Delta t}{{\tau }_{{\rm{f}}}}\right),\end{eqnarray}$$(4)

    View in Article

    $$ \begin{eqnarray}{\delta }_{{\rm{QS}}}(t)={\cos }^{2}\left(\displaystyle \frac{\pi }{2}\displaystyle \frac{V(t)}{{V}_{\lambda /4}}\right),\end{eqnarray}$$(5)

    View in Article

    $$ \begin{eqnarray}\begin{array}{ll}\displaystyle \frac{V(t)}{{V}_{\lambda /4}}= & \displaystyle \frac{{V}_{{\rm{hl}}}}{{V}_{\lambda /4}}{\left(1-\exp \left[-{\left(\displaystyle \frac{t}{{t}_{{\rm{qr}}}}\right)}^{4}\right]\right)}^{4}\\ & \times \exp \left[-{\left(\displaystyle \frac{t-{t}_{{\rm{qs}}}/2}{{t}_{{\rm{qs}}}}\right)}^{400}\right],\end{array}\end{eqnarray}$$(6)

    View in Article

    $$ \begin{eqnarray}\alpha =20{C}_{{\rm{d}}}\,\,({{\rm{cm}}}^{-1}).\end{eqnarray}$$(7)

    View in Article

    $$ \begin{eqnarray}{\tau }_{{\rm{f}}}=-16.5{C}_{{\rm{d}}}+106.67\,\,(\mu {\rm{s}}).\end{eqnarray}$$(8)

    View in Article

    $$ \begin{eqnarray}\begin{array}{ll}{\sigma }_{{\rm{se}}}= & 1.49082{C}_{{\rm{d}}}^{3}-10.28183{C}_{{\rm{d}}}^{2}+22.2149{C}_{{\rm{d}}}\\ & +8.36075(\times {10}^{-23}\,{{\rm{m}}}^{2}).\end{array}\end{eqnarray}$$(9)

    View in Article

    Xin Zhao, Zheng Song, Yuan-Ji Li, Jin-Xia Feng, Kuan-Shou Zhang. High efficiency sub-nanosecond electro–optical Q-switched laser operating at kilohertz repetition frequency[J]. Chinese Physics B, 2020, 29(8):
    Download Citation