• Frontiers of Optoelectronics
  • Vol. 13, Issue 2, 156 (2020)
Santosh K. GUPTA1 and Yuanbing MAO2、*
Author Affiliations
  • 1Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
  • 2Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA
  • show less
    DOI: 10.1007/s12200-020-1003-5 Cite this Article
    Santosh K. GUPTA, Yuanbing MAO. Recent advances, challenges, and opportunities of inorganic nanoscintillators[J]. Frontiers of Optoelectronics, 2020, 13(2): 156 Copy Citation Text show less
    References

    [1] Kamkaew A, Chen F, Zhan Y, Majewski R L, Cai W. Scintillating nanoparticles as energy mediators for enhanced photodynamic therapy. ACS Nano, 2016, 10(4): 3918–3935

    [2] Birowosuto M D, Cortecchia D, Drozdowski W, Brylew K, Lachmanski W, Bruno A, Soci C. X-ray scintillation in lead halide perovskite crystals. Scientific Reports, 2016, 6(1): 37254

    [3] Tsubota Y, Kaneko J H, Higuchi M, Nishiyama S, Ishibashi H. High-temperature scintillation properties of orthorhombic Gd2Si2O7 aiming at well logging. Applied Physics Express, 2015, 8(6): 062602

    [4] Lecoq P. Development of new scintillators for medical applications. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 809: 130–139

    [5] Jacobsohn L G, Sprinkle K B, Roberts S A, Kucera C J, James T L, Yukihara E G, DeVol T A, Ballato J. Fluoride nanoscintillators. Journal of Nanomaterials, 2011, 2011: 1

    [6] Rodnyi P A. Physical Processes in Inorganic Scintillators. Boca Raton: CRC Press, 1997

    [7] Lee S K, Kang S Y, Jang D Y, Lee C H, Kang SM. Comparison of new simple methods in fabricating ZnS (Ag) scintillators for detecting alpha particles. Nuclear science and technology, 2011, 1: 194–197

    [8] Knoll G F. Radiation Detection and Measurement. New York: John Wiley & Sons, 2010

    [9] izarri G. Scintillation mechanisms of inorganic materials: from crystal characteristics to scintillation properties. Journal of Crystal Growth, 2010, 312(8): 1213–1215

    [10] Shockley W. Problems related top-n junctions in silicon. Czechoslovak Journal of Physics, 1961, 11(2): 81–121

    [11] Robbins D. On predicting the maximum efficiency of phosphor systems excited by ionizing radiation. Journal of the Electro- chemical Society, 1980, 127(12): 2694–2702

    [12] Blasse G. Search for new inorganic scintillators. IEEE Transactions on Nuclear Science, 1991, 38(1): 30–31

    [13] Blasse G. Scintillator materials. Chemistry of Materials, 1994, 6 (9): 1465–1475

    [14] Blasse G. Luminescent materials: is there still news? Journal of Alloys and Compounds, 1995, 225(1–2): 529–533

    [15] Derenzo S, Weber M, Bourret-Courchesne E, Klintenberg M. The quest for the ideal inorganic scintillator. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 505(1–2): 111–117

    [16] Derenzo S E, Moses W, Cahoon J, Perera R, Litton J. Prospects for new inorganic scintillators. IEEE Transactions on Nuclear Science, 1990, 37(2): 203–208

    [17] Ishii M, Kobayashi M. Single crystals for radiation detectors. Progress in Crystal Growth and Characterization of Materials, 1992, 23: 245–311

    [18] Milbrath B D, Peurrung A J, Bliss M, Weber W J. Radiation detector materials: an overview. Journal of Materials Research, 2008, 23(10): 2561–2581

    [19] Liu C, Li Z, Hajagos T J, Kishpaugh D, Chen D Y, Pei Q. Transparent ultra-high-loading quantum dot/polymer nanocomposite monolith for gamma scintillation. ACS Nano, 2017, 11(6): 6422–6430

    [20] Heath R, Hofstadter R, Hughes E. Inorganic scintillators: a review of techniques and applications. Nuclear Instruments and Methods, 1979, 162(1–3): 431–476

    [21] Weber M J. Inorganic scintillators: today and tomorrow. Journal of Luminescence, 2002, 100(1–4): 35–45

    [22] Gupta T K. Characterization of Radiation Detectors (Scintillators) Used in Nuclear Medicine, Radiation, Ionization, and Detection in Nuclear Medicine. Berlin: Springer, 2013, 367–449

    [23] SyS C. Inorganic Scintillator Detectors. Available online via Caensys website

    [24] Lecoq P, Gektin A, Korzhik M. Influence of Crystal Structure Defects on Scintillation Properties. In: Inorganic Scintillators for Detector Systems. Particle Acceleration and Detection. Berlin: Springer, 2017, 197–252

    [25] Nikl M, Laguta V, Vedda A. Complex oxide scintillators: material defects and scintillation performance. Physica Status Solidi (B), 2008, 245: 1701–1722

    [26] Lisitsyn V, Lisitsyna L, Polisadova E. Complex defects in crystal scintillation materials and phosphors. IOP Conference Series. Materials Science and Engineering, 2017, 168: 012086

    [27] Kuklja M M. Defects in yttrium aluminium perovskite and garnet crystals: atomistic study. Journal of Physics Condensed Matter, 2000, 12(13): 2953–2967

    [28] Nikolopoulos D, Valais I, Michail C, Bakas A, Fountzoula C, Cantzos D, Bhattacharyya D, Sianoudis I, Fountos G, Yannakopoulos P, Panayiotakis G, Kandarakis I. Radioluminescence properties of the CdSe/ZnS quantum dot nanocrystals with analysis of long-memory trends. Radiation Measurements, 2016, 92: 19–31

    [29] Osakada Y, Pratx G, Sun C, Sakamoto M, Ahmad M, Volotskova O, Ong Q, Teranishi T, Harada Y, Xing L, Cui B. Hard X-rayinduced optical luminescence via biomolecule-directed metal clusters. Chemical Communications, 2014, 50(27): 3549–3551

    [30] Osakada Y, Pratx G, Hanson L, Solomon P E, Xing L, Cui B. Xray excitable luminescent polymer dots doped with an iridium(III) complex. Chemical Communications, 2013, 49(39): 4319–4321

    [31] Wang C, Volotskova O, Lu K, Ahmad M, Sun C, Xing L, Lin W. Synergistic assembly of heavy metal clusters and luminescent organic bridging ligands in metal-organic frameworks for highly efficient X-ray scintillation. Journal of the American Chemical Society, 2014, 136(17): 6171–6174

    [32] Yaffe M J, Rowlands J A. X-ray detectors for digital radiography. Physics in Medicine and Biology, 1997, 42(1): 1–39

    [33] Gupta S K, Zuniga J P, Abdou M, Mao Y. Thermal annealing effects on La2Hf2O7:Eu3+ nanoparticles: a curious case study of structural evolution and site-specific photo- and radio-luminescence. Inorganic Chemistry Frontiers, 2018, 5(10): 2508–2521

    [34] Gupta S K, Zuniga J P, Ghosh P S, Abdou M, Mao Y. Correlating structure and luminescence properties of undoped and Eu3+-doped La2Hf2O7 nanoparticles prepared with different coprecipitating pH values through experimental and theoretical studies. Inorganic Chemistry, 2018, 57(18): 11815–11830

    [35] Pokhrel M, Gupta S K, Wahid K, Mao Y. Pyrochlore rare-earth hafnate RE2Hf2O7 (RE = La and Pr) nanoparticles stabilized by molten-salt synthesis at low temperature. Inorganic Chemistry, 2019, 58(2): 1241–1251

    [36] Zuniga J P, Gupta S K, Pokhrel M, Mao Y. Exploring the optical properties of La2Hf2O7:Pr3+ nanoparticles under UV and X-ray excitation for potential lighting and scintillating applications. New Journal of Chemistry, 2018, 42(12): 9381–9392

    [37] Zuniga J P, Gupta S K, Abdou M, Mao Y. Effect of molten salt synthesis processing duration on the photo- and radioluminescence of UV-, visible-, and X-ray-excitable La2Hf2O7:Eu3+ nanoparticles. ACS Omega, 2018, 3(7): 7757–7770

    [38] Pokhrel M, Alcoutlabi M, Mao Y. Optical and X-ray induced luminescence from Eu3+ doped La2Zr2O7 nanoparticles. Journal of Alloys and Compounds, 2017, 693: 719–729

    [39] Pokhrel M, Burger A, Groza M, Mao Y. Enhance the photoluminescence and radioluminescence of La2Zr2O7:Eu3+ core nanoparticles by coating with a thin Y2O3 shell. Optical Materials, 2017, 68: 35–41

    [40] Wahid K, Pokhrel M, Mao Y. Structural, photoluminescence and radioluminescence properties of Eu3+ doped La2Hf2O7 nanoparticles. Journal of Solid State Chemistry, 2017, 245: 89–97

    [41] Gupta S K, Abdou M, Ghosh P S, Zuniga J P, Mao Y. Thermally induced disorder-order phase transition of Gd2Hf2O7:Eu3+ nanoparticles and its implication on photo- and radioluminescence. ACS Omega, 2019, 4(2): 2779–2791

    [42] Gupta S K, Abdou M, Zuniga J P, Ghosh P S, Molina E, Xu B, Chipara M, Mao Y. Roles of oxygen vacancies and pH induced size changes on photo- and radioluminescence of undoped and Eu3+-doped La2Zr2O7 nanoparticles. Journal of Luminescence, 2019, 209: 302–315

    [43] Abdou M, Gupta S K, Zuniga J P, Mao Y. On structure and phase transformation of uranium doped La2Hf2O7 nanoparticles as an efficient nuclear waste host. Materials Chemistry Frontiers, 2018, 2 (12): 2201–2211

    [44] Gupta S K, Abdou M, Zuniga J P, Puretzky A A, Mao Y. Samarium-activated La2Hf2O7 nanoparticles as multifunctional phosphors. ACS Omega, 2019, 4(19): 17956–17966

    [45] Gupta S K, Zuniga J P, Abdou M, Ghosh P S, Mao Y. Optical properties of undoped, Eu3+ doped and Li+ co-doped Y2Hf2O7 nanoparticles and polymer nanocomposite films. Inorganic Chemistry Frontiers, 2020, 7(2): 505–518

    [46] Zuniga J P, Gupta S K, Abdou M, De Santiago H A, Puretzky A A, Thomas M P, Guiton B S, Liu J, Mao Y. Size, structure, and luminescence of Nd2Zr2O7 nanoparticles by molten salt synthesis. Journal of Materials Science, 2019, 54(19): 12411–12423

    [47] Abdou M, Gupta S K, Zuniga J P, Mao Y. Insight into the effect of A-site cations on structural and optical properties of RE2Hf2O7:U nanoparticles. Journal of Luminescence, 2019, 210: 425–434

    [48] Gupta S K, Penilla Garcia M A, Zuniga J P, Abdou M, Mao Y. Visible and ultraviolet upconversion and near infrared downconversion luminescence from lanthanide doped La2Zr2O7 nanoparticles. Journal of Luminescence, 2019, 214: 116591

    [49] Gupta S K, Zuniga J P, Abdou M, Thomas M P, De Alwis Goonatilleke M, Guiton B S, Mao Y. Lanthanide-doped lanthanum hafnate nanoparticles as multicolor phosphors for warm white lighting and scintillators. Chemical Engineering Journal, 2020, 379: 122314

    [50] Penilla Garcia M A, Gupta S K, Mao Y. Effects of molten-salt processing parameters on the structural and optical properties of preformed La2Zr2O7:Eu3+ nanoparticles. Ceramics International, 2020, 46(2): 1352–1361

    [51] Jagtap S, Chopade P, Tadepalli S, Bhalerao A, Gosavi S. A review on the progress of ZnSe as inorganic scintillator. Opto-Electronics Review, 2019, 27(1): 90–103

    [52] Chen Q, Wu J, Ou X, Huang B, Almutlaq J, Zhumekenov A A, Guan X, Han S, Liang L, Yi Z, Li J, Xie X, Wang Y, Li Y, Fan D, Teh D B L, All A H, Mohammed O F, Bakr O M, Wu T, Bettinelli M, Yang H, Huang W, Liu X. All-inorganic perovskite nanocrystal scintillators. Nature, 2018, 561(7721): 88–93

    [53] Pan W,Wu H, Luo J, Deng Z, Ge C, Chen C, Jiang X, YinWJ, Niu G, Zhu L, Yin L, Zhou Y, Xie Q, Ke X, Sui M, Tang J. Cs2AgBiB6 single-crystal X-ray detectors with a low detection limit. Nature Photonics, 2017, 11(11): 726–732

    [54] Zhang Y, Sun R, Ou X, Fu K, Chen Q, Ding Y, Xu L J, Liu L, Han Y, Malko A V, Liu X, Yang H, Bakr OM, Liu H, Mohammed O F. Metal halide perovskite nanosheet for X-ray high-resolution scintillation imaging screens. ACS Nano, 2019, 13(2): 2520–2525

    [55] Fu H. Review of lead-free halide perovskites as light-absorbers for photovoltaic applications: from materials to solar cells. Solar Energy Materials and Solar Cells, 2019, 193: 107–132

    [56] Wang X, Zhang T, Lou Y, Zhao Y. All-inorganic lead-free perovskites for optoelectronic applications. Materials Chemistry Frontiers, 2019, 3(3): 365–375

    [57] Yamamoto S, Kamada K, Yoshikawa A. Ultrahigh resolution radiation imaging system using an optical fiber structure scintillator plate. Scientific Reports, 2018, 8(1): 3194

    [58] Berneking A, Gola A, Ferri A, Finster F, Rucatti D, Paternoster G, Shah N J, Piemonte C, Lerche C. A new PET detector concept for compact preclinical high-resolution hybrid MR-PET. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 888: 44–52

    [59] Hsu C C, Lin S L, Chang C A. Lanthanide-doped core-shell-shell nanocomposite for dual photodynamic therapy and luminescence imaging by a single X-ray excitation source. ACS Applied Materials & Interfaces, 2018, 10(9): 7859–7870

    [60] Li X, Xue Z, Jiang M, Li Y, Zeng S, Liu H. Soft X-ray activated NaYF4:Gd/Tb scintillating nanorods for in vivo dual-modal X-ray/ X-ray-induced optical bioimaging. Nanoscale, 2018, 10(1): 342– 350

    [61] Hu C, Zhang L, Zhu R Y, Chen A,Wang Z, Ying L, Yu Z. Ultrafast inorganic scintillators for GHz hard X-Ray imaging. IEEE Transactions on Nuclear Science, 2018, 65(8): 2097–2104

    [62] Miller S R, Bhandari H B, Bhattacharya P, Brecher C, Crespi J, Couture A, Dinca C, Rommel M, Nagarkar V V. Reduced afterglow codoped CsI:Tl for high energy imaging. IEEE Transactions on Nuclear Science, 2018, 65(8): 2105–2108

    [63] Blasse G, Grabmaier B. Luminescent Materials. Berlin: Springer Science & Business Media, 2012

    [64] Grabmaier B, Rossner W, Leppert J. Ceramic scintillators for XRay computed tomography. Physica Status Solidi (A), 1992, 130: K183–K187

    [65] Greskovich C, Duclos S. Ceramic scintillators. Annual Review of Materials Science, 1997, 27(1): 69–88

    [66] Bu?e G, Giuliani A, De Marcillac P, Marnieros S, Nones C, Novati V, Olivieri E, Poda D, Redon T, Sand J B, Veber P, Velázquez M, Zolotarova A S. First scintillating bolometer tests of a CLYMENE R&D on Li2MoO4 scintillators towards a large-scale double-beta decay experiment. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 891: 87–91

    [67] Zhu M, Qi H, Pan M, Hou Q, Jiang B, Jin Y, Han H, Song Z, Zhang H. Growth and luminescent properties of Yb:YAG and Ca co-doped Yb:YAG ultrafast scintillation crystals. Journal of Crystal Growth, 2018, 490: 51–55

    [68] Khan A, Rooh G, Kim H, Kim S. Ce3+-activated Tl2GdCl5: novel halide scintillator for X-ray and γ-ray detection. Journal of Alloys and Compounds, 2018, 741: 878–882

    [69] Jung J, Hirata G, Gundiah G, Derenzo S, Wrasidlo W, Kesari S, Makale M, McKittrick J. Identification and development of nanoscintillators for biotechnology applications. Journal of Luminescence, 2014, 154: 569–577

    [70] Klein J S, Sun C, Pratx G. Radioluminescence in biomedicine: physics, applications, and models. Physics in Medicine and Biology, 2019, 64(4): 04TR01

    [71] Growing Single Crystals. In: Carter C B, Norton M G, eds. Ceramic Materials: Science and Engineering. New York: Springer, 2007, 507–526

    [72] Savytskii D, Knorr B, Dierolf V, Jain H. Demonstration of single crystal growth via solid-solid transformation of a glass. Scientific Reports, 2016, 6(1): 23324

    [73] Kivambe M, Aissa B, Tabet N. Emerging technologies in crystal growth of photovoltaic silicon: progress and challenges. Energy Procedia, 2017, 130: 7–13

    [74] Zhang C, Lin J. Defect-related luminescent materials: synthesis, emission properties and applications. Chemical Society Reviews, 2012, 41(23): 7938–7961

    [75] Persyk D E, Schardt M A, Moi T E, Ritter K A, Muehllehner G. Research on pure sodium iodide as a practical scintillator. IEEE Transactions on Nuclear Science, 1980, 27(1): 167–171

    [76] Andryushchenko L, Grinev B, Udovichenko L, Litichevsky A. Improved NaI(Tl) scintillation detectors. Instruments and Experimental Techniques, 1997, 40: 59–63

    [77] Verger L, Ouvrier-Buffet P, Mathy F, Montemont G, Picone M, Rustique J, Riffard C. Performance of a new CdZnTe portable spectrometric system for high energy applications. IEEE Transactions on Nuclear Science, 2005, 52(5): 1733–1738

    [78] Berninger W. Monolithic gamma detector arrays and position sensitive detectors in high purity germanium. IEEE Transactions on Nuclear Science, 1974, 21(1): 374–378

    [79] Milbrath B D, Peurrung A J, Bliss M, Weber W J. Radiation detector materials: an overview. Journal of Materials Research, 2008, 23(10): 2561–2581

    [80] Nikl M. Scintillation detectors for X-rays. Measurement Science & Technology, 2006, 17(4): R37–R54

    [81] Greskovich C, Duclos S. Ceramic scinitillators. Annual Review of Materials Science, 1997, 27(1): 69–88

    [82] Jung J Y, Hirata G A, Gundiah G, Derenzo S, Wrasidlo W, Kesari S, Makale M T, McKittrick J. Identification and development of nanoscintillators for biotechnology applications. Journal of Luminescence, 2014, 154: 569–577

    [83] Brown S S, Rondinone A J, Dai S. Applications of Nanoparticles in Scintillation Detectors. Washington: ACS Publications, 2007

    [84] Liu C, Li Z, Hajagos T J, Kishpaugh D, Chen D Y, Pei Q. Transparent ultra-high-loading quantum dot/polymer nanocomposite monolith for gamma scintillation. ACS Nano, 2017, 11(6): 6422–6430

    [85] Yildirim S, Asal E C K, Ertekin K, Celik E. Luminescent properties of scintillator nanophosphors produced by flame spray pyrolysis. Journal of Luminescence, 2017, 187: 304–312

    [86] Hernandez-Sanchez B A, Boyle T J, Villone J, Yang P, Kinnan M, Hoppe S, Thoma S, Hattar K M, Doty F P. Size effects on the properties of high Z scintillator materials. In: Proceedings of Penetrating Radiation Systems and Applications XIII, International Society for Optics and Photonics, 2012, 85090G

    [87] Stouwdam JW, van Veggel F C. Improvement in the luminescence properties and processability of LaF3/Ln and LaPO4/Ln nanoparticles by surface modification. Langmuir, 2004, 20(26): 11763– 11771

    [88] K?mpe K, Lehmann O, Haase M. Spectroscopic distinction of surface and volume ions in cerium (III)-and terbium (III)- containing core and core/shell nanoparticles. Chemistry of Materials, 2006, 18(18): 4442–4446

    [89] Cooke D, Lee J K, Bennett B, Groves J, Jacobsohn L, McKigney E, Muenchausen R, Nastasi M, Sickafus K, Tang M, Valdez J A, Kim J Y, Hong K S. Luminescent properties and reduced dimensional behavior of hydrothermally prepared Y2SiO5:Ce nanophosphors. Applied Physics Letters, 2006, 88(10): 103108

    [90] Muenchausen R, Jacobsohn L, Bennett B, McKigney E, Smith J, Cooke D. A novel method for extracting oscillator strength of select rare-earth ion optical transitions in nanostructured dielectric materials. Solid State Communications, 2006, 139(10): 497–500

    [91] Kyung Cha B, Jun Lee S, Muralidharan P, Yul Kim J, Kim D K, Cho G. Characterization and imaging performance of nanoscintillator screen for high resolution X-ray imaging detectors. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 633: S294–S296

    [92] Klassen N V, Kedrov V V, Ossipyan Y A, Shmurak S Z, Shmyt Ko I M, Krivko O A, Kudrenko E A, Kurlov V N, Kobelev N P, Kiselev A P, Bozhko S I. Nanoscintillators for microscopic diagnostics of biological and medical objects and medical therapy. IEEE Transactions on Nanobioscience, 2009, 8(1): 20–32

    [93] Scaffidi J P, Gregas M K, Lauly B, Zhang Y, Vo-Dinh T. Activity of psoralen-functionalized nanoscintillators against cancer cells upon X-ray excitation. ACS Nano, 2011, 5(6): 4679–4687

    [94] Roy I, Ohulchanskyy T Y, Pudavar H E, Bergey E J, Oseroff A R, Morgan J, Dougherty T J, Prasad P N. Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. Journal of the American Chemical Society, 2003, 125(26): 7860– 7865

    [95] Guss P, Guise R, Yuan D, Mukhopadhyay S, O’Brien R, Lowe D, Kang Z, Menkara H, Nagarkar V V. Lanthanum halide nanoparticle scintillators for nuclear radiation detection. Journal of Applied Physics, 2013, 113(6): 064303

    [96] Walters R J, Kalkman J, Polman A, Atwater H A, de Dood M J A. Photoluminescence quantum efficiency of dense silicon nanocrystal ensembles in SiO2. Physical Review B, 2006, 73(13): 132302

    [97] Balazs A C, Emrick T, Russell T P. Nanoparticle polymer composites: where two small worlds meet. Science, 2006, 314 (5802): 1107–1110

    [98] Létant S E, Wang T F. Semiconductor quantum dot scintillation under γ-ray irradiation. Nano Letters, 2006, 6(12): 2877–2880

    [99] iu C. High-Z nanoparticle/polymer nanocomposites for gammaray scintillation detectors. Dissertation for the Doctoral Degree. Los Angeles: University of California, 2017

    [100] Novak B M. Hybrid nanocomposite materials—between inorganic glasses and organic polymers. Advanced Materials, 1993, 5(6): 422–433

    [101] Dujardin C, Amans D, Belsky A, Chaput F, Ledoux G, Pillonnet A. Luminescence and scintillation properties at the nanoscale. IEEE Transactions on Nuclear Science, 2010, 57(3): 1348–1354

    [102] Braverman J B, Fabris L, Newby J, Hornback D, Ziock K P. Threedimensional event localization in bulk scintillator crystals using optical coded apertures. In: Proceedings of IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2014, 1–8

    [103] Braverman J B. Event localization in bulk scintillator crystals using optical coded apertures. Dissertation for the Doctoral Degree. Knoxville: University of Tennessee, 2015

    [104] Melcher C. Perspectives on the future development of new scintillators. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 537(1–2): 6–14

    [105] Taheri A, Saramad S, Setayeshi S. Geant4 simulation of zinc oxide nanowires in anodized aluminum oxide template as a low energy X-ray scintillator detector. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 701: 30–36

    [106] Taheri A, Saramad S, Ghalenoei S, Setayeshi S. Taheri-Saramad Xray detector (TSXD): a novel high spatial resolution X-ray imager based on ZnO nano scintillator wires in polycarbonate membrane. Review of Scientific Instruments, 2014, 85(1): 013112

    [107] Ashworth C. Super scintillators. Nature Reviews. Materials, 2018, 3(10): 355

    [108] Alves L A, Ferreira L B, Pacheco P F, Mendivelso E A C, Teixeira P C N, Faria R X. Pore forming channels as a drug delivery system for photodynamic therapy in cancer associated with nanoscintillators. Oncotarget, 2018, 9(38): 25342–25354

    [109] Winterer M, Nitsche R, Hahn H. Local structure in nanocrystalline ZrO2 and Y2O3 by EXAFS. Nanostructured Materials, 1997, 9(1– 8): 397–400

    [110] Nigam S, Sudarsan V, Majumder C, Vatsa R. Structural differences existing in bulk and nanoparticles of Y2Sn2O7: investigated by experimental and theoretical methods. Journal of Solid State Chemistry, 2013, 200: 202–208

    [111] Cutler P A. Synthesis and scintillation of single crystal and polycrystalline rare-earth-activated lutetium aluminum garnet. Dissertation for the Master Degree. Knoxville: University of Tennessee, 2010

    [112] Ryskin N N, Dorenbos P, Eijk C W E, Batygov S K. Scintillation properties of Lu3Al5-xScxO12 crystals. Journal of Physics Condensed Matter, 1994, 6(47): 10423–10434

    [113] Zhuravleva M, Yang K, Spurrier-Koschan M, Szupryczynski P, Yoshikawa A, Melcher C. Crystal growth and characterization of LuAG:Ce:Tb scintillator. Journal of Crystal Growth, 2010, 312(8): 1244–1248

    [114] Edgar A, Bartle M, Varoy C, Raymond S, Williams G. Structure and scintillation properties of cerium-doped barium chloride ceramics: effects of cation and anion substitution. IEEE Transactions on Nuclear Science, 2010, 57(3): 1218–1222

    [115] Peng X, Schlamp M C, Kadavanich A V, Alivisatos A P. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. Journal of the American Chemical Society, 1997, 119(30): 7019–7029

    [116] Ledoux G, Gong J, Huisken F. Effect of passivation and aging on the photoluminescence of silicon nanocrystals. Applied Physics Letters, 2001, 79(24): 4028–4030

    [117] Huignard A, Buissette V, Franville A C, Gacoin T, Boilot J P. Emission processes in YVO4:Eu nanoparticles. Journal of Physical Chemistry B, 2003, 107(28): 6754–6759

    [118] Wang F, Wang J, Liu X. Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. Angewandte Chemie, 2010, 49(41): 7456–7460

    [119] Han J, Hirata G, Talbot J, McKittrick J. Luminescence enhancement of Y2O3:Eu3+ and Y2SiO5:Ce3+,Tb3+ core particles with SiO2 shells. Materials Science and Engineering B, 2011, 176(5): 436–441

    [120] Li G Z, Yu M, Wang Z L, Lin J, Wang R S, Fang J. Sol–gel fabrication and photoluminescence properties of SiO2@Gd2O3: Eu3+ core-shell particles. Journal of Nanoscience and Nanotechnology, 2006, 6(5): 1416–1422

    [121] Bao A, Lai H, Yang Y, Liu Z, Tao C, Yang H. Luminescent properties of YVO4:Eu/SiO2 core–shell composite particles. Journal of Nanoparticle Research, 2010, 12(2): 635–643

    [122] Yu M, Wang H, Lin C, Li G, Lin J. Sol–gel synthesis and photoluminescence properties of spherical SiO2@LaPO4:Ce3+/ Tb3+ particles with a core–shell structure. Nanotechnology, 2006, 17(13): 3245–3252

    [123] Osseni S A, Lechevallier S, Verelst M, Dujardin C, Dexpert-Ghys J, Neumeyer D, Leclercq M, Baaziz H, Cussac D, Santran V, Mauricot R. New nanoplatform based on Gd2O2S:Eu3+ core: synthesis, characterization and use for in vitro bio-labelling. Journal of Materials Chemistry, 2011, 21(45): 18365–18372

    [124] Ledoux G, Mercier B, Louis C, Dujardin C, Tillement O, Perriat P. Synthesis and optical characterization of Gd2O3:Eu3+ nanocrystals: surface states and VUV excitation. Radiation Measurements, 2004, 38(4–6): 763–766

    [125] Bol A A, Meijerink A. Luminescence quantum efficiency of nanocrystalline ZnS:Mn2+. 1. Surface passivation and Mn2+ concentration. Journal of Physical Chemistry B, 2001, 105(42): 10197–10202

    [126] Pokhrel M, Burger A, Groza M, Mao Y. Enhance the photoluminescence and radioluminescence of La2Zr2O7:Eu3+ core nanoparticles by coating with a thin Y2O3 shell. Optical Materials, 2017, 68: 35–41

    [127] Holloway P H, Davidson M, Jacobsohn L G. Strategy for enhanced light output from luminescent nanoparticles. Technical report. Gainesville: Florida University, 2013

    [128] Jacobsohn L, Kucera C, Sprinkle K, Roberts S, Yukihara E, DeVol T, Ballato J. Scintillation of nanoparticles: case study of rare earth doped fluorides. Nuclear Science Symposium Conference Record (NSS/MIC), IEEE, 2010, 1600–1602

    [129] Gupta S K, Sudarshan K, Ghosh P, Sanyal K, Srivastava A, Arya A, Pujari P, Kadam R. Luminescence of undoped and Eu3+ doped nanocrystalline SrWO4 scheelite: time resolved fluorescence complimented by DFT and positron annihilation spectroscopic studies. RSC Advances, 2016, 6(5): 3792–3805

    [130] Gupta S K, Sudarshan K, Ghosh P, Srivastava A, Bevara S, Pujari P, Kadam R. Role of various defects in the photoluminescence characteristics of nanocrystalline Nd2Zr2O7: an investigation through spectroscopic and DFT calculations. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2016, 4(22): 4988–5000

    [131] Gupta S K, Sudarshan K, Srivastava A, Kadam R. Visible light emission from bulk and nano SrWO4: possible role of defects in photoluminescence. Journal of Luminescence, 2017, 192: 1220– 1226

    [132] Vetrone F, Boyer J C, Capobianco J A, Speghini A, Bettinelli M. Concentration-dependent near-infrared to visible upconversion in nanocrystalline and bulk Y2O3:Er3+. Chemistry of Materials, 2003, 15(14): 2737–2743

    [133] Yang L, Li L, Zhao M, Li G. Size-induced variations in bulk/ surface structures and their impact on photoluminescence properties of GdVO4:Eu3+ nanoparticles. Physical Chemistry Chemical Physics, 2012, 14(28): 9956–9965

    [134] Jacobsohn L, Sprinkle K, Kucera C, James T, Roberts S, Qian H, Yukihara E, DeVol T, Ballato J. Synthesis, luminescence and scintillation of rare earth doped lanthanum fluoride nanoparticles. Optical Materials, 2010, 33(2): 136–140

    [135] Klassen N, Kedrov V, Kurlov V, Ossipyan Y A, Shmurak S, Shmyt’ko I, Strukova G, Kobelev N, Kudrenko E, Krivko O, Kiselev A P, Bazhenov A V, Fursova T N. Advantages and problems of nanocrystalline scintillators. IEEE Transactions on Nuclear Science, 2008, 55(3): 1536–1541

    [136] Cha B K, Lee S J, Muralidharan P, Kim J Y, Kim D K, Cho G. Characterization and imaging performance of nanoscintillator screen for high resolution X-ray imaging detectors. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 633: S294–S296

    [137] Hiyama F, Noguchi T, Koshimizu M, Kishimoto S, Haruki R, Nishikido F, Yanagida T, Fujimoto Y, Aida T, Takami S, Adschiri T, Asai K. X-ray detection capabilities of plastic scintillators incorporated with hafnium oxide nanoparticles surface-modified with phenyl propionic acid. Japanese Journal of Applied Physics, 2018, 57(1): 012601

    [138] Reithmaier J P, S?k G, L?ffler A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh L V, Kulakovskii V D, Reinecke T L, Forchel A. Strong coupling in a single quantum dot-semiconductor microcavity system. Nature, 2004, 432(7014): 197–200

    [139] Klassen N, Shmyt’ko I, Strukova G, Kedrov V, Kobelev N, Kudrenko E, Kiseliov A, Prokopiuk N. Improvement of scintillation parameters in complex oxides by formation of nanocrystalline structures. In: Proceedings of 8th International SCINT Conference, 2005, 228–231

    [140] Wilkinson J, Ucer K, Williams R. The oscillator strength of extended exciton states and possibility for very fast scintillators. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 537(1–2): 66–70

    [141] Elliot R J, Loudon R. Theory of the absorption edge in semiconductors in a high magnetic field. Journal of Physics and Chemistry of Solids, 1960, 15: 196–207

    [142] Murray C, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society, 1993, 115(19): 8706–8715

    [143] Milliron D J, Hughes S M, Cui Y, Manna L, Li J, Wang L W, Alivisatos A P. Colloidal nanocrystal heterostructures with linear and branched topology. Nature, 2004, 430(6996): 190–195

    [144] Costa-Fernández J M, Pereiro R, Sanz-Medel A. The use of luminescent quantum dots for optical sensing. Trends in Analytical Chemistry, 2006, 25(3): 207–218

    [145] Henini M, Bugajski M. Advances in self-assembled semiconductor quantum dot lasers. Microelectronics Journal, 2005, 36(11): 950– 956

    [146] Létant S E, Wang T F. Semiconductor quantum dot scintillation under γ-ray irradiation. Nano Letters, 2006, 6(12): 2877–2880

    [147] Shibuya K, Koshimizu M, Murakami H, Muroya Y, Katsumura Y, Asai K. Development of ultra-fast semiconducting scintillators using quantum confinement effect. Japanese Journal of Applied Physics, 2004, 43(10B): L1333–L1336

    [148] Liu B,Wu Q, Zhu Z, Cheng C, Gu M, Xu J, Chen H, Liu J, Chen L, Zhang Z, Ouyang X. Directional emission of quantum dot scintillators controlled by photonic crystals. Applied Physics Letters, 2017, 111(8): 081904

    [149] Blasse G, Grabmaier B. Energy Transfer, Luminescent Materials. Berlin: Springer, 1994, 91–107

    [150] Wuister S F, de Mello Donega C, Meijerink A. Local-field effects on the spontaneous emission rate of CdTe and CdSe quantum dots in dielectric media. Journal of Chemical Physics, 2004, 121(9): 4310–4315

    [151] Lamouche G, Lavallard P, Gacoin T. Optical properties of dye molecules as a function of the surrounding dielectric medium. Physical Review A, 1999, 59(6): 4668–4674

    [152] Meltzer R, Feofilov S, Tissue B, Yuan H. Dependence of fluorescence lifetimes of Y2O3:Eu3+ nanoparticles on the surrounding medium. Physical Review B, 1999, 60(20): R14012–R14015

    [153] Dolgaleva K, Boyd R W, Milonni P W. Influence of local-field effects on the radiative lifetime of liquid suspensions of Nd:YAG nanoparticles. Journal of the Optical Society of America B, Optical Physics, 2007, 24(3): 516–521

    [154] Chon B, Lim S J, Kim W, Seo J, Kang H, Joo T, Hwang J, Shin S K. Shell and ligand-dependent blinking of CdSe-based core/shell nanocrystals. Physical Chemistry Chemical Physics, 2010, 12(32): 9312–9319

    [155] Li J G, Sakka Y. Recent progress in advanced optical materials based on gadolinium aluminate garnet (Gd3Al5O12). Science and Technology of Advanced Materials, 2015, 16(1): 014902

    [156] Seeley Z M, Cherepy N J, Payne S A. Expanded phase stability of Gd-based garnet transparent ceramic scintillators. Journal of Materials Research, 2014, 29(19): 2332–2337

    [157] Nikl M, Kamada K, Babin V, Pejchal J, Pilarova K, Mihokova E, Beitlerova A, Bartosiewicz K, Kurosawa S, Yoshikawa A. Defect engineering in Ce-doped aluminum garnet single crystal scintillators. Crystal Growth & Design, 2014, 14(9): 4827–4833

    [158] Nikl M, Yoshikawa A, Kamada K, Nejezchleb K, Stanek C R, Mares J A, Blazek K. Development of LuAG-based scintillator crystals: a review. Progress in Crystal Growth and Characterization of Materials, 2013, 59(2): 47–72

    [159] Eagleman Y, Weber M, Chaudhry A, Derenzo S. Luminescence study of cerium-doped La2Hf2O7: effects due to trivalent and tetravalent cerium and oxygen vacancies. Journal of Luminescence, 2012, 132(11): 2889–2896

    [160] Gupta S K, Zuniga J P, Ghosh P S, Abdou M, Mao Y. Correlating structure and luminescence properties of undoped and La2Hf2O7: Eu3+NPs prepared with different coprecipitating pH values through experimental and theoretical studies. Inorganic Chemistry, 2018, 57: 11815–11830

    [161] Cao J, Chen L, Chen W, Xu D, Sun X, Guo H. Enhanced emissions in self-crystallized oxyfluoride scintillating glass ceramics containing KTb2F7 nanocrystals. Optical Materials Express, 2016, 6(7): 2201–2206

    [162] Schwartz K. Atomic Physics Methods in Modern Research. Berlin: Springer, 1997

    [163] Benitez E, Husk D, Schnatterly S, Tarrio C. A surface recombina- tion model applied to large features in inorganic phosphor efficiency measurements in the soft X-ray region. Journal of Applied Physics, 1991, 70(6): 3256–3260

    [164] Mikhailik V, Kraus H, Miller G, Mykhaylyk M, Wahl D. Luminescence of CaWO4, CaMoO4, and ZnWO4 scintillating crystals under different excitations. Journal of Applied Physics, 2005, 97(8): 083523

    [165] Sen S, Tyagi M, Sharma K, Sarkar P S, Sarkar S, Basak C B, Pitale S, Ghosh M, Gadkari S C. Organic-inorganic composite films based on Gd3Ga3Al2O12:Ce scintillator nanoparticles for X-ray imaging applications. ACS Applied Materials & Interfaces, 2017, 9(42): 37310–37320

    [166] Demkiv T, Halyatkin O, Vistovskyy V, Gektin A, Voloshinovskii A. Luminescent and kinetic properties of the polystyrene composites based on BaF2 nanoparticles. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 810: 1–5

    [167] Demkiv T, Halyatkin O, Vistovskyy V, Hevyk V, Yakibchuk P, Gektin A, Voloshinovskii A. X-ray excited luminescence of polystyrene composites loaded with SrF2 nanoparticles. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 847: 47–51

    [168] Martins P, Martins P, Correia V, Rocha J, Lanceros-Mendez S. Gd2O3:Eu nanoparticle-based poly (vinylidene fluoride) composites for indirect X-ray detection. Journal of Electronic Materials, 2015, 44(1): 129–135

    [169] Oliveira J, Martins P, Martins P, Correia V, Rocha J, Lanceros- Mendez S. Gd2O3:Eu3+/PPO/POPOP/PS composites for digital imaging radiation detectors. Applied Physics A, Materials Science & Processing, 2015, 121(2): 581–587

    [170] Kang Z, Zhang Y, Menkara H, Wagner B K, Summers C J, Lawrence W, Nagarkar V. CdTe quantum dots and polymer nanocomposites for X-ray scintillation and imaging. Applied Physics Letters, 2011, 98(18): 181914

    [171] LawrenceWG, Thacker S, Palamakumbura S, Riley K J, Nagarkar V V. Quantum dot-organic polymer composite materials for radiation detection and imaging. IEEE Transactions on Nuclear Science, 2012, 59(1): 215–221

    [172] Chen S, Gaume R. Transparent bulk-size nanocomposites with high inorganic loading. Applied Physics Letters, 2015, 107(24): 241906

    [173] Chen H, Rogalski M M, Anker J N. Advances in functional X-ray imaging techniques and contrast agents. Physical Chemistry Chemical Physics, 2012, 14(39): 13469–13486

    [174] Vistovskyy V, Zhyshkovych A, Halyatkin O, Mitina N, Zaichenko A, Rodnyi P, Vasil’ev A, Gektin A, Voloshinovskii A. The luminescence of BaF2 nanoparticles upon high-energy excitation. Journal of Applied Physics, 2014, 116(5): 054308

    [175] Laval M, Moszyński M, Allemand R, Cormoreche E, Guinet P, Odru R, Vacher J. Barium fluoride—inorganic scintillator for subnanosecond timing. Nuclear Instruments and Methods in Physics Research, 1983, 206(1–2): 169–176

    [176] Im H J, Saengkerdsub S, Stephan A C, Pawel M D, Holcomb D E, Dai S. Transparent solid-state lithiated neutron scintillators based on self-assembly of polystyrene-block-poly(ethylene oxide) copolymer architectures. Advanced Materials, 2004, 16(19): 1757–1761

    [177] Kesanli B, Hong K, Meyer K, Im H J, Dai S. Highly efficient solidstate neutron scintillators based on hybrid sol–gel nanocomposite materials. Applied Physics Letters, 2006, 89(21): 214104

    [178] deKrafft K E, BoyleWS, Burk LM, Zhou O Z, Lin W. Zr- and Hfbased nanoscale metal-organic frameworks as contrast agents for computed tomography. Journal of Materials Chemistry, 2012, 22 (35): 18139–18144

    [179] Doty F, Bauer C, Skulan A, Grant P, Allendorf M. Scintillating metal-organic frameworks: a new class of radiation detection materials. Advanced Materials, 2009, 21(1): 95–101

    [180] Perry J J IV, Feng P L, Meek S T, Leong K, Doty F P, Allendorf M D. Connecting structure with function in metal–organic frameworks to design novel photo- and radioluminescent materials. Journal of Materials Chemistry, 2012, 22(20): 10235–10248

    [181] Alexander P, Lacey A, Lyons L. Absorption and luminescence origins in anthracene crystals. Journal of Chemical Physics, 1961, 34(6): 2200–2201

    [182] Dekker A, Lipsett F. Fluorescent spectra of some organic solid solutions. Canadian Journal of Physics, 1952, 30(3): 165–173

    [183] Helfrich W, Lipsett F. Fluorescence and defect fluorescence of anthracene at 4.2° K. Journal of Chemical Physics, 1965, 43(12): 4368–4376

    [184] Hubbell J, Seltzer S. NIST standard reference database 126, Gaithersburg, MD: National Institute of Standards and Technology 1996

    [185] Vistovskyy V, Zhyshkovych A, Chornodolskyy Y M, Myagkota O, Gloskovskii A, Gektin A, Vasil’ev A, Rodnyi P, Voloshinovskii A. Self-trapped exciton and core-valence luminescence in BaF2 nanoparticles. Journal of Applied Physics, 2013, 114(19): 194306

    [186] Vistovskyy V, Zhyshkovych A, Mitina N, Zaichenko A, Gektin A, Vasil’ev A, Voloshinovskii A. Relaxation of electronic excitations in CaF2 nanoparticles. Journal of Applied Physics, 2012, 112(2): 024325

    [187] Malyy T, Vistovskyy V, Khapko Z, Pushak A, Mitina N, Zaichenko A, Gektin A, Voloshinovskii A. Recombination luminescence of LaPO4-Eu and LaPO4-Pr nanoparticles. Journal of Applied Physics, 2013, 113(22): 224305

    [188] Vistovskyy V, Malyy T, Pushak A, Vas’Kiv A, Shapoval A, Mitina N, Gektin A, Zaichenko A, Voloshinovskii A. Luminescence and scintillation properties of LuPO4-Ce nanoparticles. Journal of Luminescence, 2014, 145: 232–236

    [189] Bizarri G, Moses W W, Singh J, Vasil’Ev A, Williams R. An analytical model of nonproportional scintillator light yield in terms of recombination rates. Journal of Applied Physics, 2009, 105(4): 044507

    [190] Sudheendra L, Das G K, Li C, Stark D, Cena J, Cherry S, Kennedy I M. NaGdF4:Eu3+ nanoparticles for enhanced X-ray excited optical imaging. Chemistry of Materials, 2014, 26(5): 1881–1888

    [191] Sengupta D, Miller S, Marton Z, Chin F, Nagarkar V, Pratx G. Bright Lu2O3:Eu thin-film scintillators for high-resolution radioluminescence microscopy. Advanced Healthcare Materials, 2015, 4(14): 2064–2070

    [192] Ikesue A, Aung Y L. Synthesis and performance of advanced ceramic lasers. Journal of the American Ceramic Society, 2006, 89 (6): 1936–1944

    [193] McCauley J W, Patel P, Chen M, Gilde G, Strassburger E, Paliwal B, Ramesh K, Dandekar D P. AlON: a brief history of its emergence and evolution. Journal of the European Ceramic Society, 2009, 29(2): 223–236

    [194] Cherepy N, Kuntz J, Seeley Z, Fisher S, Drury O, Sturm B, Hurst T, Sanner R, Roberts J, Payne S. Transparent ceramic scintillators for gamma spectroscopy and radiography. In: Proceedings of Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XII, International Society for Optics and Photonics, 2010, 78050I

    [195] Kielty M W. Cerium doped glasses: search for a new scintillator. Dissertation for the Master Degree. Clemson: Clemson University, 2016

    [196] Biswas A, Maciel G, Friend C, Prasad P. Upconversion properties of a transparent Er3+–Yb3+ co-doped LaF3–SiO2 glass-ceramics prepared by sol–gel method. Journal of Non-Crystalline Solids, 2003, 316(2–3): 393–397

    [197] de Faoite D, Hanlon L, Roberts O, Ulyanov A, McBreen S, Tobin I, Stanton K T. Development of glass-ceramic scintillators for gamma-ray astronomy, Journal of Physics: Conference Series, 2015, 012002

    [198] Barta M B, Nadler J H, Kang Z, Wagner B K, Rosson R, Kahn B. Effect of host glass matrix on structural and optical behavior of glass–ceramic nanocomposite scintillators. Optical Materials, 2013, 36(2): 287–293

    [199] Baccaro S, Cecilia A, Mihokova E, Nikl M, Nitsch K, Polato P, Zanella G, Zannoni R. Radiation damage induced by γ irradiation on Ce3+ doped phosphate and silicate scintillating glasses. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 476(3): 785–789

    [200] Kang Z, Wagner B K, Nadler J H, Rosson R, Kahn B, Barta M B. Transparent glass scintillators, methods of making same and devices using same. Google Patents, 2016

    [201] Chen W, Cao J, Hu F, Wei R, Chen L, Sun X, Guo H. Highly efficient Na5Gd9F32:Tb3+ glass ceramic as nanocomposite scintillator for X-ray imaging. Optical Materials Express, 2018, 8(1): 41– 49

    [202] Hammig M D. Nanoscale Methods to Enhance the Detection of Ionizing Radiation. In: Nenoi M, ed. Current Topics in Ionizing Radiation Research. London: IntechOpen, 2012

    [203] Guss P, Guise R, Yuan D, Mukhopadhyay S, O’Brien R, Lowe D, Kang Z, Menkara H, Nagarkar V V. Lanthanum halide nanoparticle scintillators for nuclear radiation detection. Journal of Applied Physics, 2013, 113(6): 064303

    [204] Hall R G. Nanoscintillators for radiation detection. Dissertation for the Master Degree. Arlington: The University of Texas at Arlington, 2013

    [205] Brown S, Rondinone A J, Dai S. (ORNL), Oak Ridge, TN (United States), 2007

    [206] Schlomka J P, Roessl E, Dorscheid R, Dill S, Martens G, Istel T, B?umer C, Herrmann C, Steadman R, Zeitler G, Livne A, Proksa R. Experimental feasibility of multi-energy photon-counting Kedge imaging in pre-clinical computed tomography. Physics in Medicine and Biology, 2008, 53(15): 4031–4047

    [207] Morgan N Y, Kramer-Marek G, Smith P D, Camphausen K, Capala J. Nanoscintillator conjugates as photodynamic therapybased radiosensitizers: calculation of required physical parameters. Radiation Research, 2009, 171(2): 236–244

    [208] Chen H, Wang G D, Chuang Y J, Zhen Z, Chen X, Biddinger P, Hao Z, Liu F, Shen B, Pan Z, Xie J. Nanoscintillator-mediated Xray inducible photodynamic therapy for in vivo cancer treatment. Nano Letters, 2015, 15(4): 2249–2256

    [209] Clement S, Deng W, Camilleri E, Wilson B C, Goldys E M. X-ray induced singlet oxygen generation by nanoparticle-photosensitizer conjugates for photodynamic therapy: determination of singlet oxygen quantum yield. Scientific Reports, 2016, 6(1): 19954

    [210] Yu X, Liu X, Wu W, Yang K, Mao R, Ahmad F, Chen X, Li W. CT/MRI-guided synergistic radiotherapy and X-ray inducible photodynamic therapy using Tb-doped Gd-W-nanoscintillators. Angewandte Chemie International Edition, 2019, 58(7): 2017– 2022

    [211] Wang H, Lv B, Tang Z, Zhang M, Ge W, Liu Y, He X, Zhao K, Zheng X, He M, Bu W. Scintillator-based nanohybrids with sacrificial electron prodrug for enhanced X-ray-induced photodynamic therapy. Nano Letters, 2018, 18(9): 5768–5774

    [212] Bekah D, Cooper D, Kudinov K, Hill C, Seuntjens J, Bradforth S, Nadeau J. Synthesis and characterization of biologically stable, doped LaF3 nanoparticles co-conjugated to PEG and photosensitizers. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 329: 26–34

    [213] Butterworth K T, McMahon S J, Currell F J, Prise K M. Physical basis and biological mechanisms of gold nanoparticle radiosensitization. Nanoscale, 2012, 4(16): 4830–4838

    [214] Bulin A L, Truillet C, Chouikrat R, Lux F, Frochot C, Amans D, Ledoux G, Tillement O, Perriat P, Barberi-Heyob M, Dujardin C. X-ray-induced singlet oxygen activation with nanoscintillatorcoupled porphyrins. Journal of Physical Chemistry C, 2013, 117 (41): 21583–21589

    [215] Moronne M M. Development of X-ray excitable luminescent probes for scanning X-ray microscopy. Ultramicroscopy, 1999, 77 (1–2): 23–36

    [216] Morgan N Y, Kramer-Marek G, Smith P D, Camphausen K, Capala J. Nanoscintillator conjugates as photodynamic therapybased radiosensitizers: calculation of required physical parameters. Radiation Research, 2009, 171(2): 236–244

    [217] Liu B, Wen L, Zhao X. The structure and photocatalytic studies of N-doped TiO2 films prepared by radio frequency reactive magnetron sputtering. Solar Energy Materials and Solar Cells, 2008, 92(1): 1–10

    [218] Chen W, Zhang J. Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment. Journal of Nanoscience and Nanotechnology, 2006, 6(4): 1159–1166

    [219] Chen W, Wang S, Westcott S, Zhang J. Energy-transfer nanocomposite materials and methods of making and using same. Google Patents, 2009

    [220] Pratx G, Carpenter C M, Sun C, Xing L. X-ray luminescence computed tomography via selective excitation: a feasibility study. IEEE Transactions on Medical Imaging, 2010, 29(12): 1992–1999

    [221] Pratx G, Carpenter C M, Sun C, Rao R P, Xing L. Tomographic molecular imaging of X-ray-excitable nanoparticles. Optics Letters, 2010, 35(20): 3345–3347

    [222] Li C, Di K, Bec J, Cherry S R. X-ray luminescence optical tomography imaging: experimental studies. Optics Letters, 2013, 38(13): 2339–2341

    [223] Welsher K, Liu Z, Sherlock S P, Robinson J T, Chen Z, Daranciang D, Dai H. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nature Nanotechnology, 2009, 4 (11): 773–780

    [224] Iverson N M, Barone P W, Shandell M, Trudel L J, Sen S, Sen F, Ivanov V, Atolia E, Farias E, McNicholas T P, Reuel N, Parry NM A, Wogan G N, Strano M S. In vivo biosensing via tissuelocalizable near-infrared-fluorescent single-walled carbon nanotubes. Nature Nanotechnology, 2013, 8(11): 873–880

    [225] Yi H, Ghosh D, Ham M H, Qi J, Barone P W, Strano M S, Belcher A M. M13 phage-functionalized single-walled carbon nanotubes as nanoprobes for second near-infrared window fluorescence imaging of targeted tumors. Nano Letters, 2012, 12(3): 1176–1183

    [226] Rogach A L, Eychmüller A, Hickey S G, Kershaw S V. Infraredemitting colloidal nanocrystals: synthesis, assembly, spectroscopy, and applications. Small, 2007, 3(4): 536–557

    [227] Naczynski D J, Sun C, Türkcan S, Jenkins C, Koh A L, Ikeda D, Pratx G, Xing L. X-ray-induced shortwave infrared biomedical imaging using rare-earth nanoprobes. Nano Letters, 2015, 15(1): 96–102

    [228] Naczynski D J, Tan M C, Zevon M, Wall B, Kohl J, Kulesa A, Chen S, Roth C M, Riman R E, Moghe P V. Rare-earth-doped biological composites as in vivo shortwave infrared reporters. Nature Communications, 2013, 4(1): 2199

    [229] Yorkston J. Recent developments in digital radiography detectors. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 580(2): 974–985

    [230] Kim S, Park J, Kang S, Cha B, Cho S, Shin J, Son D, Nam S. Investigation of the imaging characteristics of the Gd2O3:Eu nanophosphor for high-resolution digital X-ray imaging system. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 576(1): 70–74

    [231] Mupparapu M, Bhargava R N, Mullick S, Singer S R, Taskar N, Yekimov A. Development and application of a novel nanophosphor scintillator for a low-dose, high-resolution digital X-ray imaging system. International Congress Series, Elsevier, 2005, 1281: 1256–1261

    [232] Chen H, Patrick A L, Yang Z, VanDerveer D G, Anker J N. Highresolution chemical imaging through tissue with an X-ray scintillator sensor. Analytical Chemistry, 2011, 83(13): 5045–5049

    [233] Yu W W, Chang E, Drezek R, Colvin V L. Water-soluble quantum dots for biomedical applications. Biochemical and Biophysical Research Communications, 2006, 348(3): 781–786

    [234] Chen W. Nanoparticle fluorescence based technology for biological applications. Journal of Nanoscience and Nanotechnology, 2008, 8(3): 1019–1051

    [235] Chen W, Westcott S L, Wang S, Liu Y. Dose dependent X-ray luminescence in MgF2:Eu2+, Mn2+ phosphors. Journal of Applied Physics, 2008, 103(11): 113103

    [236] Liu Y, Zhang Y, Wang S, Pope C, Chen W. Optical behaviors of ZnO-porphyrin conjugates and their potential applications for cancer treatment. Applied Physics Letters, 2008, 92(14): 143901

    [237] Liu Y, Chen W, Wang S, Joly A G. Investigation of water-soluble X-ray luminescence nanoparticles for photodynamic activation. Applied Physics Letters, 2008, 92(4): 043901

    [238] Liu Y, Chen W, Wang S, Joly A G, Westcott S, Woo B K. X-ray luminescence of LaF3:Tb3+ and LaF3:Ce3+,Tb3+ water-soluble nanoparticles. Journal of Applied Physics, 2008, 103(6): 063105

    [239] Juzenas P, Chen W, Sun Y P, Coelho M A N, Generalov R, Generalova N, Christensen I L. Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Advanced Drug Delivery Reviews, 2008, 60(15): 1600–1614

    [240] Klassen N V, Kedrov V V, Ossipyan Y A, Shmurak S Z, Shmyt’ko I M, Krivko O A, Kudrenko E A, Kurlov V N, Kobelev N P, Kiselev A P, Bozhko S I. Nanoscintillators for microscopic diagnostics of biological and medical objects and medical therapy. IEEE Transactions on Nanobioscience, 2009, 8(1): 20–32

    Santosh K. GUPTA, Yuanbing MAO. Recent advances, challenges, and opportunities of inorganic nanoscintillators[J]. Frontiers of Optoelectronics, 2020, 13(2): 156
    Download Citation