• Optics and Precision Engineering
  • Vol. 30, Issue 19, 2332 (2022)
Jieda CHEN1,2, Dongdong LI2, Xufei ZHU1, and Shanting ZHANG2,*
Author Affiliations
  • 1Chemistry and Chemical Engineering Institute, Nanjing University of Science and Technology, Nanjing20094, China
  • 2Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai0110, China
  • show less
    DOI: 10.37188/OPE.20223019.2332 Cite this Article
    Jieda CHEN, Dongdong LI, Xufei ZHU, Shanting ZHANG. Strategy of improving mechanical stability of flexible perovskite solar cells[J]. Optics and Precision Engineering, 2022, 30(19): 2332 Copy Citation Text show less
    References

    [1] Q S ZHOU, J M QIU, Y F WANG et al. Multifunctional chemical bridge and defect passivation for highly efficient inverted perovskite solar cells. ACS Energy Letters, 6, 1596-1606(2021).

    [2] Q YANG, X LIU, S W YU et al. Hydroxylated non-fullerene acceptor for highly efficient inverted perovskite solar cells. Energy & Environmental Science, 14, 6536-6545(2021).

    [3] X LI, Y MENG, R Z LIU et al. High-efficiency and durable inverted perovskite solar cells with thermally-induced phase-change electron extraction layer. Advanced Energy Materials, 11, 2102844(2021).

    [4] Z ZHENG, F LI, J GONG et al. Pre‐Buried Additive for Cross‐Layer Modification in Flexible Perovskite Solar Cells with Efficiency Exceeding 22%. Advanced Materials, 2109879(2022).

    [5] G LI, L SHENG, T Y LI et al. Engineering flexible dye-sensitized solar cells for portable electronics. Solar Energy, 177, 80-98(2019).

    [6] H ÁGUAS, T MATEUS, A VICENTE et al. Thin film silicon photovoltaic cells on paper for flexible indoor applications. Advanced Functional Materials, 25, 3592-3598(2015).

    [7] A CHIRILĂ, P REINHARD, F PIANEZZI et al. Potassium-induced surface modification of Cu(In, Ga)Se2 thin films for high-efficiency solar cells. Nature Materials, 12, 1107-1111(2013).

    [8] F DI GIACOMO, A FAKHARUDDIN, R JOSE et al. Progress, challenges and perspectives in flexible perovskite solar cells. Energy & Environmental Science, 9, 3007-3035(2016).

    [9] M M TAVAKOLI, K H TSUI, Q P ZHANG et al. Highly efficient flexible perovskite solar cells with antireflection and self-cleaning nanostructures. ACS Nano, 9, 10287-10295(2015).

    [10] 10张耀, 曹小平, 王春芬. 材料力学[M]. 北京: 清华大学出版社, 2015.ZHANGY, CAOX P, WANGCH F. Mechanics of materials[M]. Beijing: Tsinghua University Press, 2015. (in Chinese)

    [11] J J ZHAO, Y H DENG, H T WEI et al. Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Science Advances, 3(2017).

    [12] W H BRAGG, W L BRAGG. The reflection of X-rays by crystals. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 88, 428-438(1913).

    [13] C ZHU, X X NIU, Y H FU et al. Strain engineering in perovskite solar cells and its impacts on carrier dynamics. Nature Communications, 10, 815(2019).

    [14] S M AHN, E D JUNG, S H KIM et al. Nanomechanical approach for flexibility of organic-inorganic hybrid perovskite solar cells. Nano Letters, 19, 3707-3715(2019).

    [15] S SEONG, Y M LIU, X W GONG. Mechanical study of perovskite solar cells: opportunities and challenges for wearable power source. Optical Materials Express, 12, 772-787(2022).

    [16] J G YU, M C WANG, S C LIN. Probing the soft and nanoductile mechanical nature of single and polycrystalline organic-inorganic hybrid perovskites for flexible functional devices. ACS Nano, 10, 11044-11057(2016).

    [17] S J SUN, Y N FANG, G KIESLICH et al. Mechanical properties of organic-inorganic halide perovskites, CH3NH3PbX3 (X = I, Br and Cl), by nanoindentation. Journal of Materials Chemistry A, 3, 18450-18455(2015).

    [18] B J DOU, E M MILLER, J A CHRISTIANS et al. High-performance flexible perovskite solar cells on ultrathin glass: implications of the TCO. The Journal of Physical Chemistry Letters, 8, 4960-4966(2017).

    [19] S KIM, I JEONG et al. Influence of a solvent trap in ITO/PEN substrates on the performance of flexible perovskite solar cells and light-emitting diodes. ACS Applied Electronic Materials, 3, 3207-3217(2021).

    [20] C ROLDáN-CARMONA, O MALINKIEWICZ, A SORIANO et al. Flexible high efficiency perovskite solar cells. Energy & Environmental Science, 7, 994-997(2014).

    [21] Y JIANG, Y B QI. Metal halide perovskite-based flexible tandem solar cells: next-generation flexible photovoltaic technology. Materials Chemistry Frontiers, 5, 4833-4850(2021).

    [22] H X WANG, M M ZHENG, C CHEN et al. Electron transport interface engineering with pyridine functionalized perylene diimide-based material for inverted perovskite solar cell. Chemical Engineering Journal, 438, 135410(2022).

    [23] T L BU, J LI, H Y LI et al. Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules. Science, 372, 1327-1332(2021).

    [24] N ROLSTON, K BUSH, A PRINTZ et al. Engineering stress in perovskite solar cells to improve stability. Advanced Energy Materials, 8, 1802139(2018).

    [25] M HASEGAWA, T ISHIGAMI, J ISHII et al. Solution-processable transparent polyimides with low coefficients of thermal expansion and self-orientation behavior induced by solution casting. European Polymer Journal, 49, 3657-3672(2013).

    [26] J J DENG, L W ZHANG, L A HUI et al. Indium tin oxide thin-film thermocouple probe based on sapphire microrod. Sensors (Basel, Switzerland), 20, 1289(2020).

    [27] G LEE, M C KIM, Y W CHOI et al. Ultra-flexible perovskite solar cells with crumpling durability: toward a wearable power source. Energy & Environmental Science, 12, 3182-3191(2019).

    [28] M M TAVAKOLI, Q F LIN, S F LEUNG et al. Efficient, flexible and mechanically robust perovskite solar cells on inverted nanocone plastic substrates. Nanoscale, 8, 4276-4283(2016).

    [29] Y R SHI, C H CHEN, Y H LOU et al. Strategies of perovskite mechanical stability for flexible photovoltaics. Materials Chemistry Frontiers, 5, 7467-7478(2021).

    [30] Q LUO, H MA, Q Z HOU et al. All-carbon-electrode-based endurable flexible perovskite solar cells. Advanced Functional Materials, 28, 1706777(2018).

    [31] S KANG, J JEONG, S CHO et al. Ultrathin, lightweight and flexible perovskite solar cells with an excellent power-per-weight performance. Journal of Materials Chemistry A, 7, 1107-1114(2019).

    [32] S LAN, S YOON, H J SEOK et al. Low-temperature deposited highly flexible In-Zn-V-O transparent conductive electrode for perovskite solar cells. ACS Applied Energy Materials, 5, 234-248(2022).

    [33] L X HOU, Y L WANG, X H LIU et al. 18.0% efficiency flexible perovskite solar cells based on double hole transport layers and CH3NH3PbI3-xClx with dual additives. Journal of Materials Chemistry C, 6, 8770-8777(2018).

    [34] J S FENG, X J ZHU, Z YANG et al. Record efficiency stable flexible perovskite solar cell using effective additive assistant strategy. Advanced Materials (Deerfield Beach, Fla), 30(2018).

    [35] Y J LAN, Y WANG, Y L SONG. Efficient flexible perovskite solar cells based on a polymer additive. Flexible and Printed Electronics, 5(2020).

    [36] X T HU, X C MENG, X YANG et al. Cementitious grain-boundary passivation for flexible perovskite solar cells with superior environmental stability and mechanical robustness. Science Bulletin, 66, 527-535(2021).

    [37] M FAHIM, I FIRDOUS, S W TSANG et al. Engineering intrinsic flexibility in polycrystalline perovskite film by grain boundary stitching for high mechanical endurance. Nano Energy, 96, 107058(2022).

    [38] C H CHEN, Z H SU, Y H LOU et al. Full-dimensional grain boundary stress release for flexible perovskite indoor photovoltaics. Advanced Materials, 34, 2200320(2022).

    [39] X C MENG, Z R CAI, Y Y ZHANG et al. Bio-inspired vertebral design for scalable and flexible perovskite solar cells. Nature Communications, 11, 3016(2020).

    [40] T Y XUE, G S CHEN, X T HU et al. Mechanically robust and flexible perovskite solar cells via a printable and gelatinous interface. ACS Applied Materials & Interfaces, 13, 19959-19969(2021).

    [41] N Y REN, B B CHEN, R J LI et al. Humidity-resistant flexible perovskite solar cells with over 20% efficiency. Solar RRL, 5, 2000795(2021).

    [42] X C MENG, Z XING, X T HU et al. Stretchable perovskite solar cells with recoverable performance. Angewandte Chemie (International Ed in English), 59, 16602-16608(2020).

    [43] B P FINKENAUER, Y GAO, X K WANG et al. Mechanically robust and self-healable perovskite solar cells. Cell Reports Physical Science, 2, 100320(2021).

    [44] C D GE, X T LIU, Z Q YANG et al. Thermal dynamic self‐healing supramolecular dopant towards efficient and stable flexible perovskite solar cells. Angewandte Chemie International Edition, 61(2022).

    [45] Z Y CHEN, R T YIN, S N OBAID et al. Flexible and transparent metal oxide/metal grid hybrid interfaces for electrophysiology and optogenetics. Advanced Materials Technologies, 5, 2000322(2020).

    [46] C X BAO, W D ZHU, J YANG et al. Highly flexible self-powered organolead trihalide perovskite photodetectors with gold nanowire networks as transparent electrodes. ACS Applied Materials & Interfaces, 8, 23868-23875(2016).

    [47] H HWANG, A KIM, Z Y ZHONG et al. Reducible-shell-derived pure-copper-nanowire network and its application to transparent conducting electrodes. Advanced Functional Materials, 26, 6545-6554(2016).

    [48] H G IM, S JEONG, J JIN et al. Hybrid crystalline-ITO/metal nanowire mesh transparent electrodes and their application for highly flexible perovskite solar cells. NPG Asia Materials, 8(2016).

    [49] A KIM, H LEE, H C KWON et al. Fully solution-processed transparent electrodes based on silver nanowire composites for perovskite solar cells. Nanoscale, 8, 6308-6316(2016).

    [50] D JUNG, H J SHIM et al. Highly conductive and elastic nanomembrane for skin electronics. Science, 373, 1022-1026(2021).

    [51] B W GAO, J MENG. Flexible CH3NH3PbI3 perovskite solar cells with high stability based on all inkjet printing. Solar Energy, 230, 598-604(2021).

    [52] E LEE, H C KWON et al. All-solution-processed silver nanowire window electrode-based flexible perovskite solar cells enabled with amorphous metal oxide protection. Advanced Energy Materials, 8, 1702182(2018).

    [53] X C MENG, Y F XU, Q X WANG et al. Silver mesh electrodes via electroless deposition-coupled inkjet-printing mask technology for flexible polymer solar cells. Langmuir: the ACS Journal of Surfaces and Colloids, 35, 9713-9720(2019).

    [54] Y W LI, L MENG, Y YANG et al. High-efficiency robust perovskite solar cells on ultrathin flexible substrates. Nature Communications, 7, 10214(2016).

    [55] S CHO, S KANG, A PANDYA et al. Large-area cross-aligned silver nanowire electrodes for flexible, transparent, and force-sensitive mechanochromic touch screens. ACS Nano, 11, 4346-4357(2017).

    [56] H M LEE, S B KANG, K B CHUNG et al. Transparent and flexible amorphous In-Si-O films for flexible organic solar cells. Applied Physics Letters, 102(2013).

    [57] M MORALES-MASIS, S DE WOLF, R WOODS-ROBINSON et al. Transparent electrodes for efficient optoelectronics. Advanced Electronic Materials, 3, 1600529(2017).

    [58] S PISONI, R CARRON, T MOSER et al. Tailored lead iodide growth for efficient flexible perovskite solar cells and thin-film tandem devices. NPG Asia Materials, 10, 1076-1085(2018).

    [59] L GIULIA, T M BROWN. Development of highly bendable transparent window electrodes based on MoOx, SnO2, and Au dielectric/metal/dielectric stacks: application to indium tin oxide (ITO)-free perovskite solar cells. Frontiers in Materials, 6, 310(2019).

    [60] G S HAN, S LEE, M L DUFF et al. Multi-functional transparent electrode for reliable flexible perovskite solar cells. Journal of Power Sources, 435, 226768(2019).

    [61] S CASTRO-HERMOSA, J DAGAR, A MARSELLA et al. Perovskite solar cells on paper and the role of substrates and electrodes on performance. IEEE Electron Device Letters, 38, 1278-1281(2017).

    [62] Y X GUO, J L CHENG, L LIU et al. Grains boundary networking interconnection design for robust flexible perovskite solar cell. Materials Letters, 292, 129559(2021).

    [63] T H HAN, J W LEE, C CHOI et al. Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells. Nature Communications, 10, 520(2019).

    [64] J W LEE, H S KIM, N G PARK. Lewis acid-base adduct approach for high efficiency perovskite solar cells. Accounts of Chemical Research, 49, 311-319(2016).

    [65] S LI, X L LIU, R LI et al. Shear deformation dominates in the soft adhesive layers of the laminated structure of flexible electronics. International Journal of Solids and Structures, 110/111, 305-314(2017).

    Jieda CHEN, Dongdong LI, Xufei ZHU, Shanting ZHANG. Strategy of improving mechanical stability of flexible perovskite solar cells[J]. Optics and Precision Engineering, 2022, 30(19): 2332
    Download Citation