• Chinese Optics Letters
  • Vol. 22, Issue 8, 081301 (2024)
Zhuopei Yu1, Weihong Hua1, Chenxi Zhang1, Runlin Miao2..., Ke Yin1,* and Tian Jiang3,**|Show fewer author(s)
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • 2National Innovation Institute of Defense Technology, Academy of Military Sciences PLA China, Beijing 100071, China
  • 3Institute for Quantum Science and Technology, National University of Defense Technology, Changsha 410073, China
  • show less
    DOI: 10.3788/COL202422.081301 Cite this Article Set citation alerts
    Zhuopei Yu, Weihong Hua, Chenxi Zhang, Runlin Miao, Ke Yin, Tian Jiang, "Comparative study on pump frequency tuning and self-injection locking in Kerr microcomb generation," Chin. Opt. Lett. 22, 081301 (2024) Copy Citation Text show less
    References

    [1] T. J. Kippenberg, A. L. Gaeta, M. Lipson et al. Dissipative Kerr solitons in optical microresonators. Science, 361, eaan8083(2018).

    [2] C. Bao, Z. Yuan, L. Wu et al. Architecture for microcomb-based GHz-mid-infrared dual-comb spectroscopy. Nat. Commun., 12, 6573(2021).

    [3] R. Niu, M. Li, S. Wan et al. kHz-precision wavemeter based on reconfigurable microsoliton. Nat. Commun., 14, 169(2023).

    [4] R. Miao, K. Yin, C. Zhang et al. Stable soliton dual-microcomb generation via sideband thermal compensation for spectroscopy. Front. Phys., 10, 989047(2022).

    [5] W. Liang. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun., 6, 7957(2015).

    [6] J. Liu, E. Lucas, A. S. Raja et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat. Photonics, 14, 486(2020).

    [7] M.-G. Suh, K. J. Vahala. Soliton microcomb range measurement. Science, 359, 884(2018).

    [8] H. Shu, L. Chang, Y. Tao et al. Microcomb-driven silicon photonic systems. Nature, 605, 457(2022).

    [9] Z. Tao, Y. Tao, M. Jin et al. Highly reconfigurable silicon integrated microwave photonic filter towards next-generation wireless communication. Photon. Res., 11, 682(2023).

    [10] H. Zhou, Y. Geng, W. Cui et al. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light Sci. Appl., 8, 50(2019).

    [11] R. Miao, C. Zhang, X. Zheng et al. Repetition rate locked single-soliton microcomb generation via rapid frequency sweep and sideband thermal compensation. Photon. Res., 10, 1859(2022).

    [12] C. Joshi, J. K. Jang, K. Luke et al. Thermally controlled comb generation and soliton mode-locking in microresonators. Opt. Lett., 41, 2565(2016).

    [13] M. H. Anderson, R. Bouchard, J. Liu et al. Photonic chip-based resonant supercontinuum via pulse-driven Kerr microresonator solitons. Optica, 8, 771(2021).

    [14] X. Xue, P. Grelu, B. Yang et al. Dispersion-less Kerr solitons in spectrally confined optical cavities. Light Sci. Appl., 12, 19(2023).

    [15] Z. Ye, H. Jia, Z. Huang et al. Foundry manufacturing of tight-confinement, dispersion-engineered, ultralow-loss silicon nitride photonic integrated circuits. Photon. Res., 11, 558(2023).

    [16] W. Wang, W. Zhang, Z. Lu et al. Self-locked orthogonal polarized dual comb in a microresonator. Photon. Res., 6, 363(2018).

    [17] R. Miao, K. Yin, C. Zhou et al. Dual-microcomb generation via a monochromatically pumped dual-mode microresonator. Photon. Res., 12, 163(2024).

    [18] A. S. Voloshin, N. M. Kondratiev, G. V. Lihachev et al. Dynamics of soliton self-injection locking in optical microresonators. Nat. Commun., 12, 235(2021).

    [19] B. Bai, Q. Yang, H. Shu et al. Microcomb-based integrated photonic processing unit. Nat. Commun., 14, 66(2023).

    [20] M. H. P. Pfeiffer, J. Liu, M. Geiselmann, T. J. Kippenberg. Coupling ideality of integrated planar high-Q microresonators. Phys. Rev. Appl., 7, 024026(2017).

    [21] Y.-H. Luo, B. Shi, W. Sun et al. A vector spectrum analyzer of 55.1 THz spectral bandwidth and 99 kHz frequency resolution(2023).

    [22] X. Wang, W.-Q. Wang, P. Xie et al. Avoided mode-crossing assisted single soliton formation. Opt. Laser Technol., 161, 109118(2023).

    [23] J. Guo, C. A. McLemore, C. Xiang et al. Chip-based laser with 1-hertz integrated linewidth. Sci. Adv., 8, eabp9006(2022).

    [24] Z. Yu, K. Yin, C. Zhang et al. Integrated narrow-linewidth laser source based on self-injection locking. Proc. SPIE, 12595, 125950A(2023).

    [25] M. Clementi, E. Nitiss, J. Liu et al. A chip-scale second-harmonic source via self-injection-locked all-optical poling. Light Sci. Appl., 12, 296(2023).

    [26] C. Xiang, J. Liu, J. Guo et al. Laser soliton microcombs heterogeneously integrated on silicon. Science, 373, 99(2021).

    [27] N. M. Kondratiev, V. E. Lobanov, E. A. Lonshakov et al. Numerical study of solitonic pulse generation in the self-injection locking regime at normal and anomalous group velocity dispersion. Opt. Express, 28, 38892(2020).

    [28] T. C. Briles, S.-P. Yu, L. Chang et al. Hybrid InP and SiN integration of an octave-spanning frequency comb. APL Photonics, 6, 026102(2021).

    [29] B. Shen, L. Chang, J. Liu et al. Integrated turnkey soliton microcombs. Nature, 582, 365(2020).

    [30] W. Cui, X. Liu, H. Zhou et al. Ultra-low time jitter transform-limited dissipative Kerr soliton microcomb. Opt. Express, 31, 37154(2023).

    [31] F. Lei, Z. Ye, Ó. B. Helgason et al. Optical linewidth of soliton microcombs. Nat. Commun., 13, 3161(2022).

    [32] N. Y. Dmitriev, S. N. Koptyaev, A. S. Voloshin et al. Hybrid integrated dual-microcomb source. Phys. Rev. Appl., 18, 034068(2022).

    [33] Z. Xiao, T. Li, M. Cai et al. Near-zero-dispersion soliton and broadband modulational instability Kerr microcombs in anomalous dispersion. Light Sci. Appl., 12, 33(2023).

    [34] C. Bao, L. Zhang, A. Matsko et al. Nonlinear conversion efficiency in Kerr frequency comb generation. Opt. Lett., 39, 6126(2014).

    Zhuopei Yu, Weihong Hua, Chenxi Zhang, Runlin Miao, Ke Yin, Tian Jiang, "Comparative study on pump frequency tuning and self-injection locking in Kerr microcomb generation," Chin. Opt. Lett. 22, 081301 (2024)
    Download Citation