• Frontiers of Optoelectronics
  • Vol. 11, Issue 2, 134 (2018)
Christian REIMER1, Yanbing ZHANG1, Piotr ROZTOCKI1, Stefania SCIARA1、2, Luis Romero1, Mehedi ISLAM1, Bennet FISCHER1, Benjamin WETZEL3, Alfonso Carmelo2, Sai Tak4, Brent LITTLE5, David MOSS6, Lucia CASPANI7, Jose AZANA1, Michael KUES1、8, and Roberto MORANDOTTI1、9、10
Author Affiliations
  • 1Institut National de la Recherche Scientifique – Centre Energie, Materiaux et Telecommunications (INRS-EMT), 1650 Boulevard Lionel-Boulet, Varennes, Quebec, J3X 1S2, Canada
  • 2Department of Energy, Information Engineering and Mathematical Models, University of Palermo, Palermo, Italy
  • 3Department of Physics & Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, UK
  • 4Department of Physics and Material Science, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
  • 5State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China
  • 6Centre for Micro Photonics, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
  • 7Institute of Photonics, Department of Physics, University of Strathclyde, Glasgow G1 1RD, UK
  • 8School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LT, UK
  • 9Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
  • 10National Research University of Information Technologies, Mechanics and Optics, St Petersburg 197101, Russia
  • show less
    DOI: 10.1007/s12200-018-0814-0 Cite this Article
    Christian REIMER, Yanbing ZHANG, Piotr ROZTOCKI, Stefania SCIARA, Luis Romero, Mehedi ISLAM, Bennet FISCHER, Benjamin WETZEL, Alfonso Carmelo, Sai Tak, Brent LITTLE, David MOSS, Lucia CASPANI, Jose AZANA, Michael KUES, Roberto MORANDOTTI. On-chip frequency combs and telecommunications signal processing meet quantum optics[J]. Frontiers of Optoelectronics, 2018, 11(2): 134 Copy Citation Text show less
    References

    [1] Lloyd S. Universal quantum simulators. Science, 1996, 273(5278): 1073–1078

    [2] Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O’Brien J L. Quantum computers. Nature, 2010, 464(7285): 45–53

    [3] O’Brien J L. Optical quantum computing. Science, 2007, 318 (5856): 1567–1570

    [4] Pfeifle J, Brasch V, Lauermann M, Yu Y, Wegner D, Herr T, Hartinger K, Schindler P, Li J, Hillerkuss D, Schmogrow R, Weimann C, Holzwarth R, Freude W, Leuthold J, Kippenberg T J, Koos C. Coherent terabit communications with microresonator Kerr frequency combs. Nature Photonics, 2014, 8(5): 375–380

    [5] Kimble H J. The quantum internet. Nature, 2008, 453(7198): 1023–1030

    [6] Wang X L, Chen L K, Li W, Huang H L, Liu C, Chen C, Luo Y H, Su Z E, Wu D, Li Z D, Lu H, Hu Y, Jiang X, Peng C Z, Li L, Liu N L, Chen Y A, Lu C Y, Pan J W. Experimental ten-photon entanglement. Physical Review Letters, 2016, 117(21): 210502

    [7] Yao X C,Wang T X, Chen H Z, GaoWB, Fowler A G, Raussendorf R, Chen Z B, Liu N L, Lu C Y, Deng Y J, Chen Y A, Pan J W. Experimental demonstration of topological error correction. Nature, 2012, 482(7386): 489–494

    [8] Lu C Y, Zhou X Q, Gühne O, GaoW B, Zhang J, Yuan Z S, Goebel A, Yang T, Pan J W. Experimental entanglement of six photons in graph states. Nature Physics, 2007, 3(2): 91–95

    [9] Blatt R, Wineland D. Entangled states of trapped atomic ions. Nature, 2008, 453(7198): 1008–1015

    [10] Kandala A, Mezzacapo A, Temme K, Takita M, Brink M, Chow J M, Gambetta J M. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 2017, 549(7671): 242–246

    [11] Kwiat P G. Hyper-entangled states. Journal of Modern Optics, 1997, 44(11–12): 2173–2184

    [12] Barreiro J T, Langford N K, Peters N A, Kwiat P G. Generation of hyperentangled photon pairs. Physical Review Letters, 2005, 95(26): 260501

    [13] Xie Z, Zhong T, Shrestha S, Xu X A, Liang J, Gong Y X, Bienfang J C, Restelli A, Shapiro J H, Wong F N C, Wei Wong C. Harnessing high-dimensinal hyperentanglement through a biphoton frequency comb. Nature Photonics, 2015, 9(8): 536–542

    [14] Udem T, Holzwarth R, Hansch T W. Optical frequency metrology. Nature, 2002, 416(6877): 233–237

    [15] Zaidi H, Menicucci N C, Flammia S T, Bloomer R, Pysher M, Pfister O. Entangling the optical frequency comb: Simultaneous generation of multiple 2 × 2 and 2 × 3 continuous-variable cluster states in a single optical parametric oscillator. Laser Physics, 2008, 18(5): 659–666

    [16] Roslund J, de Araújo R M, Jiang S, Fabre C, Treps N. Wavelengthmultiplexed quantum networks with ultrafast frequency combs. Nature Photonics, 2014, 8(2): 109–112

    [17] Reimer C, Caspani L, Clerici M, Ferrera M, Kues M, Peccianti M, Pasquazi A, Razzari L, Little B E, Chu S T, Moss D J, Morandotti R. Integrated frequency comb source of heralded single photons. Optics Express, 2014, 22(6): 6535–6546

    [18] Harris N C, Grassani D, Simbula A, Pant M, Galli M, Baehr-Jones T, Hochberg M, Englund D, Bajoni D, Galland C. Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems. Physical Review X, 2014, 4(4): 041047

    [19] Azzini S, Grassani D, Strain M J, Sorel M, Helt L G, Sipe J E, Liscidini M, Galli M, Bajoni D. Ultra-low power generation of twin photons in a compact silicon ring resonator. Optics Express, 2012, 20(21): 23100–23107

    [20] Reimer C, Kues M, Caspani L, Wetzel B, Roztocki P, Clerici M, Jestin Y, Ferrera M, Peccianti M, Pasquazi A, Little B E, Chu S T, Moss D J, Morandotti R. Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip. Nature Communications, 2015, 6(1): 8236

    [21] Caspani L, Xiong C, Eggleton B J, Bajoni D, Liscidini M, Galli M, Morandotti R, Moss D J. Integrated sources of photon quantum states based on nonlinear optics. Light, Science & Applications, 2017, 6(11): e17100

    [22] Reimer C, Kues M, Roztocki P, Wetzel B, Grazioso F, Little B E, Chu S T, Johnston T, Bromberg Y, Caspani L, Moss D J, Morandotti R. Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science, 2016, 351(6278): 1176–1180

    [23] Mazeas F, Traetta M, Bentivegna M, Kaiser F, Aktas D, Zhang W, Ramos C A, Ngah L A, Lunghi T, Picholle E, Belabas-Plougonven N, Le Roux X, Cassan E, Marris-Morini D, Vivien L, Sauder G, Labonte L, Tanzilli S. High-quality photonic entanglement for wavelength-multiplexed quantum communication based on a silicon chip. Optics Express, 2016, 24(25): 28731–28738

    [24] Jaramillo-Villegas J A, Imany P, Odele O D, Leaird D E, Ou Z Y, Qi M, Weiner A M. Persistent energy–time entanglement covering multiple resonances of an on-chip biphoton frequency comb. Optica, 2017, 4(6): 655–658

    [25] Grassani D, Azzini S, Liscidini M, Galli M, Strain M J, Sorel M, Sipe J E, Bajoni D. Micrometer-scale integrated silicon source of time-energy entangled photons. Optica, 2015, 2(2): 88–94

    [26] Silverstone J W, Santagati R, Bonneau D, Strain M J, Sorel M, O’Brien J L, Thompson M G. Qubit entanglement between ringresonator photon-pair sources on a silicon chip. Nature Communications, 2015, 6(1): 7948

    [27] Kues M, Reimer C, Roztocki P, Cortes L R, Sciara S, Wetzel B, Zhang Y, Cino A, Chu S T, Little B E, Moss D J, Caspani L, Azana J, Morandotti R. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature, 2017, 546(7660): 622–626

    [28] Yokoyama S, Ukai R, Armstrong S C, Sornphiphatphong C, Kaji T, Suzuki S, Yoshikawa J, Yonezawa H, Menicucci N C, Furusawa A. Ultra-large-scale continuous-variable cluster states multiplexed in the time domain. Nature Photonics, 2013, 7(12): 982–986

    [29] Pysher M, Miwa Y, Shahrokhshahi R, Bloomer R, Pfister O. Parallel generation of quadripartite cluster entanglement in the optical frequency comb. Physical Review Letters, 2011, 107(3): 030505

    [30] Chen M, Menicucci N C, Pfister O. Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb. Physical Review Letters, 2014, 112(12): 120505

    [31] Lukens J M, Lougovski P. Frequency-encoded photonic qubits for scalable quantum information processing. Optica, 2017, 4(1): 8–16

    [32] Gerke S, Sperling J, Vogel W, Cai Y, Roslund J, Treps N, Fabre C. Full multipartite entanglement of frequency-comb Gaussian states. Physical Review Letters, 2015, 114(5): 050501

    [33] Menicucci N C. Fault-tolerant measurement-based quantum computing with continuous-variable cluster states. Physical Review Letters, 2014, 112(12): 120504

    [34] Bonneau D, Silverstone J W, Thompson M G. In: Pavesi L, Lockwood D J, eds. Silicon Photonics III. Heidelberg: Springer, 2016, 41–82

    [35] Tanzilli S, Martin A, Kaiser F, De Micheli M P, Alibart O, Ostrowsky D B. On the genesis and evolution of integrated quantum optics. Laser & Photonics Reviews, 2012, 6(1): 115–143

    [36] Sharping J E, Lee K F, Foster M A, Turner A C, Schmidt B S, Lipson M, Gaeta A L, Kumar P. Generation of correlated photons in nanoscale silicon waveguides. Optics Express, 2006, 14(25): 12388–12393

    [37] Engin E, Bonneau D, Natarajan C M, Clark A S, Tanner M G, Hadfield R H, Dorenbos S N, Zwiller V, Ohira K, Suzuki N, Yoshida H, Iizuka N, Ezaki M, O’Brien J L, ThompsonMG. Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement. Optics Express, 2013, 21(23): 27826–27834

    [38] Horn R T, Kolenderski P, Kang D, Abolghasem P, Scarcella C, Frera A D, Tosi A, Helt L G, Zhukovsky S V, Sipe J E, Weihs G, Helmy A S, Jennewein T. Inherent polarization entanglement generated from a monolithic semiconductor chip. Scientific Reports, 2013, 3(1): 2314

    [39] Carolan J, Harrold C, Sparrow C, Martin-Lopez E, Russell N J, Silverstone J W, Shadbolt P J, Matsuda N, Oguma M, Itoh M, Marshall G D, Thompson M G, Matthews J C, Hashimoto T, O’Brien J L, Laing A. Universal linear optics. Science, 2015, 349(6249): 711–716

    [40] Politi A, Matthews J C F, O’Brien J L. Shor’s quantum factoring algorithm on a photonic chip. Science, 2009, 325(5945): 1221

    [41] Spring J B, Metcalf B J, Humphreys P C, Kolthammer W S, Jin X M, Barbieri M, Datta A, Thomas-Peter N, Langford N K, Kundys D, Gates J C, Smith B J, Smith P G, Walmsley I A. Boson sampling on a photonic chip. Science, 2013, 339(6121): 798–801

    [42] Kippenberg T J, Holzwarth R, Diddams S A. Microresonator-based optical frequency combs. Science, 2011, 332(6029): 555–559

    [43] Pasquazi A, Peccianti M, Razzari L, Moss D J, Coen S, Erkintalo M, Chembo Y K, Hansson T,Wabnitz S, Del’Haye P, Xue X,Weiner A M, Morandotti R. Micro-combs: a novel generation of optical sources. Physics Reports, 2018, 729: 1–81

    [44] Jiang W C, Lu X, Zhang J, Painter O, Lin Q. Silicon-chip source of bright photon pairs. Optics Express, 2015, 23(16): 20884–20904

    [45] Hemsley E, Bonneau D, Pelc J, Beausoleil R, O’Brien J L, ThompsonMG. Photon pair generation in hydrogenated amorphous silicon microring resonators. Scientific Reports, 2016, 6(1): 38908

    [46] Carmon T, Yang L, Vahala K. Dynamical thermal behavior and thermal self-stability of microcavities. Optics Express, 2004, 12(20): 4742–4750

    [47] Roztocki P, Kues M, Reimer C, Wetzel B, Sciara S, Zhang Y, Cino A, Little B E, Chu S T, Moss D J, Morandotti R. Practical system for the generation of pulsed quantum frequency combs. Optics Express, 2017, 25(16): 18940–18949

    [48] Moss D J, Morandotti R, Gaeta A L, Lipson M. New CMOScompatible platforms based on silicon nitride and Hydex for nonlinear optics. Nature Photonics, 2013, 7(8): 597–607

    [49] Caspani L, Reimer C, Kues M, Roztocki P, Clerici M, Wetzel B, Jestin Y, Ferrera M, Peccianti M, Pasquazi A, Razzari L, Little B E, Chu S T, Moss D J, Morandotti R. Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated quantum frequency combs. Nanophotonics, 2016, 5(2): 351–362

    [50] Caspani L, Xiong C, Eggleton B J, Bajoni D, Liscidini M, Galli M, Morandotti R, Moss D J. Integrated sources of photon quantum states based on nonlinear optics. Light: Science & Applications, 2017, 6: e17100

    [51] Imany P, Jaramillo-Villegas J A, Odele O D, Han K, Leaird D E, Lukens J M, Lougovski P, Qi M, Weiner A M. 50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator. Optics Express, 2018, 26(2): 1825–1840

    [52] Lu H H, Lukens J M, Peters N A, Odele O D, Leaird D E, Weiner A M, Lougovski P. Electro-optic frequency beam splitters and tritters for high-fidelity photonic quantum information processing. Physical Review Letters, 2018, 120(3): 030502

    [53] Lu H H, Lukens J M, Peters N A, Williams B P, Weiner A M, Lougovski P. Controllable two-photon interference with versatile quantum frequency processor. arXiv preprint arXiv:1803.10712 (2018)

    Christian REIMER, Yanbing ZHANG, Piotr ROZTOCKI, Stefania SCIARA, Luis Romero, Mehedi ISLAM, Bennet FISCHER, Benjamin WETZEL, Alfonso Carmelo, Sai Tak, Brent LITTLE, David MOSS, Lucia CASPANI, Jose AZANA, Michael KUES, Roberto MORANDOTTI. On-chip frequency combs and telecommunications signal processing meet quantum optics[J]. Frontiers of Optoelectronics, 2018, 11(2): 134
    Download Citation