[1] M Ghysels, G Durry, N Amarouche et al. A lightweight balloon-borne laser diode sensor for the in-situ measurement of CO2 at 2.68 micron in the upper troposphere and the lower stratosphere. Applied Physics B, 107, 213-220(2012).
[2] L Yao, W Q Liu, J G Liu et al. Measurements of CO2 concentration profile in troposphere based on balloon-borne TDLAS system. Spectroscopy and Spectral Analysis, 35, 2787-2791(2015).
[3] S Roche, K Strong, D Wunch et al. Retrieval of atmospheric CO2 vertical profiles from ground-based near-infrared spectra. Atmospheric Measurement Techniques, 14, 3087-3118(2021).
[4] C G Shan, W Wang, C Liu et al. Retrieval of vertical profiles and tropospheric CO2 columns based on high-resolution FTIR over Hefei, China. Optics Express, 29, 4958-4977(2021).
[5] C G Shan. Spectral Measurement of Greenhouse Gases by Laser Heterodyne Spectrometer and Retrieval Algorithm(2019).
[6] A Delahaigue, D Courtois, C Thiebeaux et al. Atmospheric laser heterodyne detection. Infrared Physics & Technology, 37, 7-12(1996).
[7] R T Menzies, M S Shumate. Remote measurements of ambient air pollutants with a bistatic laser system. Applied Optics, 15, 2080-2084(1976).
[8] R T Menzies, R K Seals. Ozone monitoring with an infrared heterodyne radiometer. Science, 197, 1275-1277(1977).
[9] F Schmülling, B Klumb, M Harter et al. High-sensitivity mid-infrared heterodyne spectrometer with a tunable diode laser as a local oscillator. Applied Optics, 37, 5771-5776(1998).
[10] M Mumma, T Kostiuk, S Cohen et al. Infrared heterodyne spectroscopy of astronomical and laboratory sources at 8.5 µm. Nature, 253, 514-516(1975).
[11] G Sonnabend, D Wirtz, V Vetterle et al. High-resolution observations of Martian non-thermal CO2 emission near 10 μm with a new tuneable heterodyne receiver. Astronomy & Astrophysics, 435, 1181-1184(2005).
[12] D Weidmann, W J Reburn, K M Smith. Ground-based prototype quantum cascade laser heterodyne radiometer for atmospheric studies. The Review of Scientific Instruments, 78, 073107(2007).
[13] D Weidmann, G Wysocki. High-resolution broadband (> 100 cm-1) infrared heterodyne spectro-radiometry using an external cavity quantum cascade laser. Optics Express, 17, 248(2008).
[14] H Nakagawa, S Aoki, H Sagawa et al. IR heterodyne spectrometer MILAHI for continuous monitoring observatory of Martian and Venusian atmospheres at Mt. Haleakalā, Hawaii. Planetary and Space Science, 126, 34-48(2016).
[15] A Hoffmann, N A Macleod, M Huebner et al. Thermal infrared laser heterodyne spectroradiometry for solar occultation atmospheric CO2 measurements. Atmospheric Measurement Techniques, 9, 5975-5996(2016).
[16] D Weidmann, B J Perrett, N A MacLeod et al. Hollow waveguide photomixing for quantum cascade laser heterodyne spectro-radiometry. Optics Express, 19, 9074-9085(2011).
[17] E L Wilson, M L McLinden, J H Miller et al. Miniaturized laser heterodyne radiometer for measurements of CO2 in the atmospheric column. Applied Physics B, 114, 385-393(2014).
[18] H R Melroy, E L Wilson, G B Clarke et al. Autonomous field measurements of CO2 in the atmospheric column with the miniaturized laser heterodyne radiometer (Mini-LHR). Applied Physics B, 120, 609-615(2015).
[19] E L Wilson, A J DiGregorio, G Villanueva et al. A portable miniaturized laser heterodyne radiometer (mini-LHR) for remote measurements of column CH4 and CO2. Applied Physics B, Laser and Optics, 125, 11(2019).
[20] E L Wilson, A J DiGregorio, V J Riot et al. A 4 U laser heterodyne radiometer for methane (CH4) and carbon dioxide (CO2) measurements from an occultation-viewing CubeSat. Measurement Science and Technology, 28, 035902(2017).
[21] J J Wang, C Y Sun, G S Wang et al. A fibered near-infrared laser heterodyne radiometer for simultaneous remote sensing of atmospheric CO2 and CH4. Optics and Lasers in Engineering, 129, 106083(2020).
[22] H Deng, C G Yang, W Wang et al. Near infrared heterodyne radiometer for continuous measurements of atmospheric CO2 column concentration. Infrared Physics & Technology, 101, 39-44(2019).
[23] B Parvitte, V Zeninari, C Thiebeaux et al. Infrared laser heterodyne systems. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 60, 1193-1213(2004).
[24] X J Lu, Z S Cao, T Tan et al. Instrument line shape function of laser heterodyne spectrometer. Acta Physica Sinica, 68, 136-142(2019).
[25] F J Shen. Development of a Laser Heterodyne Radiometer for Atmospheric Remote Sensing(2019).
[26] H Deng, C Yang, Z Xu et al. Development of a laser heterodyne spectroradiometer for high-resolution measurements of CO2, CH4, H2O and O2 in the atmospheric column. Optics Express, 29, 2003-2013(2021).
[27] C D Rodgers. Inverse Methods for Atmospheric Sounding: Theory and Practice(2000).
[28] S A Clough, M J Iacono, J L Moncet et al. Line-by-line calculations of atmospheric fluxes and cooling rates: Application to water vapor. Journal of Geophysical Research: Atmospheres, 97, 15761-15785(1992).
[29] S A Clough, M J Iacono. Line-by-line calculation of atmospheric fluxes and cooling rates: 2. Application to carbon dioxide, ozone, methane, nitrous oxide and the halocarbons. Journal of Geophysical Research: Atmospheres, 1995 100, 16519-16535.