[2] Stanley R, Jackson S D, Yao Y. Mid-infrared photonics[J]. Nature Photonics, 2012,6(1): 407-498.
[3] Perry M D, Mourou G. Terawatt to petawatt subpicosecond lasers[J]. Science, 1994,264(5161): 917-924.
[4] Coluccelli N, Galzerano G, Laporta P, et al. Tm-doped LiLuF4 crystal for efficient laser action in the wavelength range from 1.82 to 2.06 μm[J]. Optics Letters, 2007,32(14): 2040-2042.
[5] Galzerano G, Cornacchia F, Parisi D, et al. Widely tunable 1.94 μm Tm∶BaY2F8 laser[J]. Optics Letters, 2005,30(8): 854-856.
[6] Stoneman R C, Esterowitz L. Efficient, broadly tunable, laser-pumped Tm∶YAG and Tm: YSGG cw lasers[J]. Optics Letters, 1990,15(9): 486-488.
[7] Veselsky K, ulc J, Jelínková H, et al. Spectroscopic and laser properties of a broadly tunable diode-pumped Tm3+∶CaF2-SrF2 laser[J]. Laser Physics Letters, 2020,17(2): 025802.
[8] Li J, Yang S H, Meissner A, et al. A 200 W INNOSLAB Tm∶YLF laser[J]. Laser Physics Letters, 2013,10(5): 055002.
[9] Yu H, Pan Z, Zhang H, et al. Efficient Tm: LuVO4 laser at 1.9 μm[J]. Optics Letters, 2011,36(13): 2402-2404.
[10] Lisiecki R, Solarz P, Dominiak-Dzik G, et al. Comparative optical study of thulium-doped YVO4, GdVO4, and LuVO4 single crystals[J]. Physical Review B, 2006,74(3): 035103.
[11] Berrou A, Collett O J P, Morris D, et al. Comparative study of high power Tm∶YLF and Tm∶LLF slab lasers in continuous wave regime[J]. Optics Express, 2018,26(8): 10559-10572.
[12] Zhang Z, Guo X, Wang J, et al. High-efficiency 2 μm continuous-wave laser in laser diode-pumped Tm3+,La3+∶CaF2 single crystal[J]. Optics Letters, 2018,43(17): 4300-4303.
[13] Koopmann P, Lamrini S, Scholle K, et al. Efficient diode-pumped laser operation of Tm∶Lu2O3 around 2 μm[J]. Optics Letters, 2011,36(6): 948-950.
[14] Fornasiero L, Berner N, Dicks B M, et al. Broadly tunable laser emission from Tm∶Y2O3 and Tm∶Sc2O3 at 2 μm[C]//Advanced Solid State Lasers. Optical Society of America, 1999: WD5.
[15] Gaponenko M, Kuleshov N, Südmeyer T. Efficient diode-pumped Tm∶KYW 1.9-μm microchip laser with 1 W cw output power[J]. Optics Express, 2014,22(10): 11578-11582.
[16] Meng P B, Yao B Q, Li G, et al. Comparative investigation of efficient diode-pumped c-cut Tm∶YAP laser emitting at 1.94 and 1.99 μm[J]. Laser Physics, 2012,22(2): 351-354.
[17] Feng T L, Yang K J, Zhao S Z, et al. An acoustic-optically Q-switched Tm∶SSO laser at 2 μm[J]. Optics Communications, 2015,336: 20-23.
[18] Liu X, Huang H, Shen D, et al. Highly efficient resonantly pumped 2000 nm Tm∶YAG ceramic laser[J]. Optical Engineering, 2014,53(4): 040501.
[19] Frith G P, Lancaster D G, Jackson S D. High-power 2 μm Tm3+-doped fibre lasers[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2004,5620.
[20] Wang Y, Lan J, Zhou Z, et al. Continuous-wave laser operation of diode-pumped Tm-doped Gd3Ga5O12 crystal[J]. Optical Materials, 2017,66: 185-188.
[21] Cornacchia F, Parisi D, Sani E, et al. Comparative analysis of the 2 μm emission in Tm3+∶BaY2F8 and Tm3+∶KYF4: spectroscopy and laser experiment[C]//Advanced Solid-State Photonics. Optical Society of America, 2005: 219.
[22] Gao W L, Ma J, Xie G Q, et al. Highly efficient 2 μm Tm∶YAG ceramic laser[J]. Optics Letters, 2012,37(6): 1076-1078.
[23] Sottile A, Damiano E, Rabe M, et al. Widely tunable, efficient 2 μm laser in monocrystalline Tm3+∶SrF2[J]. Optics Express, 2018,26(5): 5368-5380.
[24] Wang Y, Zhao Y, Pan Z, et al. 78 fs SWCNT-SA mode-locked Tm∶CLNGG disordered garnet crystal laser at 2017 nm[J]. Optics Letters, 2018,43(17): 4268-4271.
[25] Cao D, Peng Q, Du S, et al. A 200 W diode-side-pumped CW 2 μm Tm∶YAG laser with water cooling at 8 ℃[J]. Applied Physics B, 2011,103(1): 83-88.
[26] ulc J, Boháek P, Němec M, et al. Tm∶GGAG crystal for 2 μm tunable diode-pumped laser[C]//Laser Sources and Applications III. International Society for Optics and Photonics, 2016,9893: 98930H.
[27] Feng T, Yang K, Zhao S, et al. Efficient CW dual-wavelength and passively Q-switched Tm∶LuAG lasers[J]. IEEE Photonics Technology Letters, 2014,27(1): 7-10.
[28] Zhao Y, Li W, Wang Y, et al. SWCNT-SA mode-locked Tm∶LuYO3 ceramic laser delivering 8-optical-cycle pulses at 2 μm[J]. Optics Letters, 2019,45(2): 459-462.
[29] Ehrenreich T, Leveille R, Majid I, et al. In 1-kW, all-glass Tm∶fiber laser[J]. Proc. SPIE, 2010: 758016.
[30] Hao Z, Zhang L, Wang Y, et al. 11 W continuous-wave laser operation at 2.09 μm in Tm∶Lu1.6Sc0.4O3 mixed sesquioxide ceramics pumped by a 796 nm laser diode[J]. Optical Materials Express, 2018,8(11): 3615-3621.
[31] Wang Y, Zhao Y, Loiko P, et al. 52-fs SESAM mode-locked Tm,Ho∶CALGO laser[C]// Advanced Solid State Lasers. 2019.
[32] Zhao Y, Wang Y, Zhang X, et al. 87 fs mode-locked Tm,Ho∶CaYAlO4 laser at 2 043 nm[J]. Optics Letters, 2018,43(4): 915-918.
[33] Kim J W, Mackenzie J I, Parisi D, et al. Efficient Ho∶LuLiF4 laser in-band pumped by a Tm fiber laser[C]//Conference on Lasers and Electro-Optics. Optical Society of America, 2010: CMDD4.
[34] Kifle E, Loiko P, Romero C, et al. Femtosecond laser written Ho∶KGd(WO4)2 waveguide laser at 2.1 μm[J]. Optics Letters, 2019,44(7): 1738-1741.
[35] Ji E, Liu Q, Nie M, et al. High-slope-efficiency 2.06 μm Ho∶YLF laser in-band pumped by a fiber-coupled broadband diode[J]. Optics Letters, 2016,41(6): 1237-1240.
[36] Duan X, Chen G, Qian C, et al. Resonantly pumped high efficiency Ho∶GdTaO4 laser[J]. Optics Express, 2019,27(13): 18273-18281.
[37] Xue Y, Li N, Song Q, et al. Spectral properties and laser performance of Ho∶CNGG crystals grown by the micro-pulling-down method[J]. Optical Materials Express, 2019,9(6): 2490-2496.
[38] Duan X, Shen Y, Zhang Z, et al. A passively Q-switching of diode-pumped 2.08 μm Ho∶CaF2 laser[J]. Infrared Physics & Technology, 2019,103: 103071.
[39] Zhang J, Shen D, Xu X, et al. Widely tunable, narrow line-width Ho∶CaYAlO4 laser with a volume Bragg grating[J]. Optical Materials Express, 2016,6(6): 1768-1773.
[40] Duan X M, Shen Y J, Yao B Q, et al. A 106 W Q-switched Ho∶YAG laser with single crystal[J]. Optik, 2018,169: 224-227.
[41] Duan X, Qian C, Shen Y, et al. Efficient Ho∶(Sc0.5Y0.5)2SiO5 laser at 2.1 μm in-band pumped by Tm fiber laser[J]. Optics Express, 2019,27(4): 4522-4527.
[42] Duan X, Qian C, Zheng L, et al. Efficient 2.1 μm laser action of an Ho∶ScYSiO5 (Ho∶SYSO) mixed crystal at room temperature[J]. Laser Physics, 2019,29(5): 055803.
[43] Qin H. An efficient continuous wave Ho∶LSO laser double-pass pumped by a linewidth-narrowed Tm fiber laser[J]. Journal of Russian Laser Research, 2017,38(3): 301-304.
[44] Zhang W S, Duan X M, Li L J. High power Ho∶SSO laser resonantly pumped by a FBG-locked Tm fiber laser at 1940.3 nm[J]. Optik, 2018,175: 340-343.
[45] Jing W, Loiko P, Serres J M, et al. Synthesis, spectroscopic characterization and laser operation of Ho3+ in “mixed”(Lu, Sc)2O3 ceramics[J]. Journal of Luminescence, 2018,203: 145-151.
[46] Wang F, Tang J, Li E, et al. Ho3+∶Y2O3 ceramic laser generated over 113 W of output power at 2117 nm[J]. Optics Letters, 2019,44(24): 5933-5936.
[47] Koopmann P, Lamrini S, Scholle K, et al. Holmium-doped Lu2O3, Y2O3, and Sc2O3 for lasers above 2.1 μm[J]. Optics Express, 2013,21(3): 3926-3931.
[48] Dai T Y, Ju Y L, Shen Y J, et al. High-efficiency continuous-wave and Q-switched operation of a resonantly pumped Ho∶YAP ring laser[J]. Laser Physics, 2012,22(8): 1292-1294.
[49] Zhou D H, Xu X D, Shen D Y, et al. Laser performance of holmium-doped Lu3Al5O12 and (Lu, Y)3Al5O12 crystals pumped by Tm∶fiber laser[J]. Laser Physics, 2011,21(11): 1876-1879.
[50] Smart R G, Carter J N, Tropper A C, et al. Continuous-wave oscillation of Tm3+-doped fluorozirconate fibre lasers at around 1.47 μm, 1.9 μm and 2.3 μm when pumped at 790 nm[J]. Optics Communications, 1991,82(5-6): 563-570.
[51] Guillemot L, Loiko P, Braud A, et al. Continuous-wave Tm∶YAlO3laser at ~2.3 μm[J]. Optics Letters, 2019,44(20): 5077-5080.
[52] Diening A, Mbert P E A, Huber G. Diode-pumped continuous-wave, quasi-continuous-wave, and Q-switched laser operation of Yb3+, Tm3+∶YLiF4 at 1.5 and 2.3 μm[J]. Journal of Applied Physics, 1998,84(11): 5900-5904.
[53] Sudesh V, Piper J A. Spectroscopy, modeling, and laser operation of thulium-doped crystals at 2.3 μm[J]. IEEE Journal of Quantum Electronics, 2000,36(7): 879-884.
[54] Allen R, Esterowitz L. CW diode pumped 2.3 μm fiber laser[J]. Applied Physics Letters, 1989,55(8): 721-722.
[55] Wang S, Huang H, Chen H, et al. High efficiency nanosecond passively Q-switched 2.3 μm Tm∶YLF laser using a ReSe2-based saturable output coupler[J]. OSA Continuum, 2019,2(5): 1676-1682.
[56] Guillemot L, Loiko P, Soulard R, et al. Close look on cubic Tm∶KY3F10 crystal for highly efficient lasing on the 3H4→3H5 transition[J]. Optics Express, 2020,28(3): 3451-3463.
[57] Rosenblatt G H, Pinto J F, Stoneman R C, et al. Continuously tunable 2.3 μm Tm∶GSGG laser[C]//Proceedings of LEOS'93. IEEE, 1993: 689-690.
[58] Muti A, Canbaz F, Tonelli M, et al. Graphene mode-locked operation of Tm3+∶YLiF4 and Tm3+∶KY3F10 lasers near 2.3 μm[J]. Optics Letters, 2020,45(3): 656-659.
[59] Mirov S B, Fedorov V V, Martyshkin D, et al. Progress in mid-IR lasers based on Cr and Fe-doped II-VI chalcogenides[J]. IEEE Journal of Selected Topics in Quantum Electronics. 2015,21(1): 292-310.
[60] Vasilyev S, Mirov M, Gapontsev V. High power Kerr-lens mode-locked femtosecond mid-IR laser with efficient second harmonic generation in polycrystalline Cr2+∶ZnS and Cr2+∶ZnSe[C]//Advanced Solid State Lasers, Optical Society of America, 2014.
[61] Mirov S, Fedorov V, Moskalev I, et al. Progress in Cr2+ and Fe2+ doped mid-IR laser materials[J]. Laser & Photonics Reviews,2010,4(1): 21-41.
[62] Zakel A, Wagner G J, Sullivan A C, et al. In High-brightness, rapidly-tunable Cr∶ZnSe lasers[C]//Advanced Solid-State Photonics, Optical Society of America, 2005: MD2.
[63] Wagner G J, Schober A, Bennett G, et al. In Multi-Watt broadly-tunable diode-pumped Cr∶ZnSe laser[C]//CLEO∶Science and Innovations, Optical Society of America,2012: CTu2D.2.
[64] Fedorov V, Moskalev I, Mirov M, et al. In Energy scaling of nanosecond gain-switched Cr2+∶ZnSe lasers[C]//SPIE LASE, International Society for Optics and Photonics,2011: 79121E-79127.
[65] Sorokina I T, Sorokin E. Chirped-mirror dispersion controlled femtosecond Cr∶ZnSe laser[C]// Advanced Solid-state Photonics Advanced Solid-state Photonics,2007.
[66] Moskalev I, Mirov S B, Mirov M, et al. 140 W Cr: ZnSe laser system[J]. Optics Express, 2016,24(18): 21090-21104.
[67] Fedorov V, Mirov M S, Mirov S, et al. In Compact 1 J mid-IR Cr∶ZnSe Laser[J]. Frontiers in Optics, Optical Society of America,2012: FW6B. 9.
[68] Wang L, Huang H, Shen D, et al. Highly stable self-pulsed operation of an Er∶Lu2O3 ceramic laser at 2.7 μm[J]. Laser Physics Letters, 2017,14(4): 045803.
[69] Sanamyan T, Kanskar M, Xiao Y, et al. High power diode-pumped 2.7 μm Er3+∶Y2O3 laser with nearly quantum defect-limited efficiency[J]. Optics Express, 2011,5(19): A1082.
[70] Tasoltan T B, Yu V O, Polyachenkova M V, et al. Continuously tunable cw lasing near 2.75 μm in diode-pumped Er3+∶SrF2 and Er3+∶CaF2 crystals[J]. Quantum Electronics, 2006,36(7): 591-594.
[71] Quan C, Sun D, Luo J, et al. 2.7 μm dual-wavelength laser performance of LD end-pumped Er∶YAP crystal[J]. Optics Express, 2018, 26(22): 28421-28428.
[72] Zhang Z, Ma F K, Guo X S, et al. Mid-infrared spectral properties and laser performance of Er3+ doped CaxSr1-xF2 single crystals[J]. Optical Materials Express, 2018,8(12): 3820-3828.
[73] Fan M, Li T, Zhao J, et al. Continuous wave and ReS2 passively Q-switched Er∶SrF2 laser at 3 μm[J]. Optics Letters, 2018, 43(8): 1726-1729.
[74] Chen J, Sun D, Luo J, et al. Performances of a diode end-pumped GYSGG/Er, Pr∶GYSGG composite laser crystal operated at 2.79 μm[J]. Optics Express, 2014,22(20): 23795-23800.
[75] Shen B, Kang H, Chen P, et al. Performance of continuous-wave laser-diode side-pumped Er∶YSGG slab lasers at 2.79 μm[J]. Applied Physics B. 2015,121(4): 511-515.
[76] Stoneman R C, Esterowitz L. Efficient resonantly pumped 2.8 μm Er3+∶GSGG laser[J]. Optics Letters. 1992,17(11): 816-818.
[77] Uehara H, Tokita S, Kawanaka J, et al. Optimization of laser emission at 2.8 μm by Er∶Lu2O3 ceramics[J]. Optics Express, 2018,26(3): 3497-3507.
[78] Shigeki T, Masanao M, Seiji S, et al. Liquid-cooled 24 W mid-infrared Er∶ZBLAN fiber laser[J]. Optics Letters, 2009,34(20): 3062-4.
[79] Pollnau M, Lüthy W, Weber H P, et al. Investigation of diode-pumped 2.8 μm laser performance in Er∶BaY2F8[J]. Optics Letters, 1996, 21(1): 48-50.
[80] Wyss C, Lüthy W, Weber H P, et al. Emission properties of an optimised 2.8 μm Er3+∶YLF laser[J]. Optics Communications, 1997, 139(4): 215-218.
[81] Dinerman B J, Moulton P F. 3 μm cw laser operations in erbium-doped YSGG, GGG, and YAG[J]. Optics Letters, 1994, 19(15): 1143-1145.
[82] Louis M, Simoni E, Hubert S, et al. A new CW laser at 2.82 μm, U3+/LiYF4: laser parameters[J]. Advanced Solid State Lasers. Optical Society of America, 1995,24: 141-145.
[83] Li T, Beil K, Krankel C, et al. Laser performance of highly doped Er∶Lu2O3 at 2.8 μm[C]// Advanced Solid-state Photonics,2012.
[84] Zhang H, Sun D, Luo J, et al. Growth, spectroscopy, and laser performance of a radiation-resistant Cr,Yb,Ho,Pr∶GYSGG crystal for 2.84 μm mid-infrared laser[J]. Journal of Luminescence, 2018: 636-640.
[85] Diening A, Mobert P E A, Heumann E, et al. Diode-pumped cw lasing of Yb, Ho∶KYF4 in the 3 μm spectral range in comparison to Er∶KYF4[J]. Laser Physics, 1998,8(1): 214-217.
[86] Lukasz S, Lukasz P, Maciej P, et al. Experimental investigation of mid-infrared laser action from Dy3+ doped fluorozirconate fiber[J]. IEEE Photonics Technology Letters, 2018,30(12): 1-1.
[87] Li T, Beil K, Krnkel C, et al. Efficient high-power continuous wave Er∶Lu2O3 laser at 2.85 μm[J]. Optics Letters. 2012,37 (13): 2568-2570.
[88] Jackson S D, Hudson D D. Recent progress towards efficient and powerful fibre laser emission at 3 μm[C]//Laser Technology for Defense and Security IX. International Society for Optics and Photonics, 2013,8733: 87330 W.
[89] Crawford S, Hudson D D, Jackson S D. 3.4 W Ho3+, Pr3+ co-doped fluoride fibre laser[C]//2014 Conference on Lasers and Electro-Optics (CLEO)-Laser Science to Photonic Applications. IEEE, 2014: 1-2.
[90] Jackson S D. Single-transverse-mode 2.5 W holmium-doped fluoride fiber laser operating at 2.86 μm[J]. Optics Letters, 2004,29(4): 334-336.
[91] Hudson D, Magi E, Gomes L, et al. 1 W diode-pumped tunable Ho3+, Pr3+-doped fluoride glass fibre laser[J]. Electronics Letters, 2011,47(17): 985-986.
[92] Jackson S D. Continuous wave 2.9 μm dysprosium-doped fluoride fiber laser[J]. Applied Physics Letters, 2003,83(7): 1316-1318.
[93] Nie H, Xia H, Shi B, et al. High-efficiency watt-level continuous-wave 2.9 μm Ho, Pr∶YLF laser[J]. Optics Letters, 2018,43(24): 6109-6112.
[94] Bowman S R, Rabinovich W S, Bowman A P, et al. 3 μm laser performance of Ho∶YAlO3 and Nd, Ho∶YAlO3[J]. IEEE Journal of Quantum Electronics, 1990,26(3): 403-406.
[95] Naruse K, Arai T, Kawauchi S, et al. Theoretical study of variable function (cutting/coagulating) laser surgical system using continuous-wave 3 μm, 2 μm cascade Ho3+: ZBLAN fiber laser[C]//Laser-Tissue Interaction XII: Photochemical, Photothermal, and Photomechanical. International Society for Optics and Photonics, 2001,4257: 334-340.
[96] Ziolek C, Ernst H, Will G F, et al. High-repetition-rate, high-average-power, diode-pumped 2.94 μm Er∶YAG laser[J]. Optics Letters, 2001,26(9): 599-601.
[97] Ahn J T, Seo H S, Park B J. Fiber laser system using fiber having dysprosium. US, Patent No. 7,616,668[P]. 10 Nov. 2009.
[98] Nie H, Zhang P, Zhang B, et al. Watt-level continuous-wave and black phosphorus passive Q-switching operation of Ho3+,Pr3+∶LiLuF4 bulk laser at 2.95 μm[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017,24(5): 1-5.
[99] Li J, Hudson D D, Jackson S D. High-power diode-pumped fiber laser operating at 3 μm[J]. Optics Letters, 2011, 36(18): 3642-3644.
[100] Majewski M R, Jackson S D. Highly efficient mid-infrared dysprosium fiber laser[J]. Optics Letters, 2016,41(10): 2173.
[101] Wang Y, Jobin F, Duval S, et al. Ultrafast Dy3+∶fluoride fiber laser beyond 3 μm[J]. Optics Letters, 2019,44(2): 395-398.
[102] Woodward R I, Majewski M R, Bharathan G, et al. Watt-level dysprosium fiber laser at 3.15 μm with 73% slope efficiency[J]. Optics Letters, 2018,43(7): 1471-1474.
[103] Carbonnier C, Tobben H, Unrau U. Room temperature CW fibre laser at 3.22 μm[J]. Electronics Letters, 1998,34(9): 893-894.
[104] Duval S, Gauthier J C, Robichaud L R, et al. Watt-level fiber-based femtosecond laser source tunable from 2.8 to 3.6 μm[J]. Optics Letters, 2016,41(22): 5294.
[105] Tobben H. Room temperature CW fibre laser at 3.5 μm in Er3+-doped ZBLAN glass[J]. Electronics Letters, 1992,28(14): 1361-1362.
[106] Qin Z, Hai T, Xie G, et al. Black phosphorus Q-switched and mode-locked mid-infrared Er: ZBLAN fiber laser at 3.5 μm wavelength[J]. Optics Express, 2018,26(7): 8224-8231.
[107] Kozlovskii V I, Korostelin Y V, Landman A I, et al. Pulsed Fe2+∶ZnS laser continuously tunable in the wavelength range of 3.49 -4.65 μm[J]. Quantum Electronics, 2011,41(1): 1-3.
[108] Schneide J, Carbonnier C, Unrau U B. Characterization of a Ho3+-doped fluoride fiber laser with a 3.9 μm emission wavelength[J]. Applied Optics, 1997,36(33): 8595-8600.
[109] Myoung N, Martyshkin D V, Fedorov V V, et al. Energy scaling of 4.3 μm room temperature Fe∶ZnSe laser[J]. Optics Letters, 2011,36(1): 94-96.
[110] Velikanov S D, Danilov V P, Zakharov N G, et al. Fe2+∶ZnSe laser pumped by a nonchain electric-discharge HF laser at room temperature[J]. Quantum Electronics, 2014,44(2): 141-144.
[111] Fedorov V, Martyshkin D V, Mirov M, et al. Fe-doped binary and ternary II-VI mid-infrared laser materials[C]// Advanced Solid-state Lasers Congress. 2013.
[112] Nostrand M C, Page R H, Payne S A, et al. Room-temperature laser action at 4.3-4.4 μm in CaGa2S4∶Dy3+[J]. Optics Letters, 1999,24(17): 1215-1217.
[113] Jelínková H, Doroshenko M E, Jelínek M, et al. Dysprosium-doped PbGa2S4 laser generating at 4.3 μm directly pumped by 1.7 μm laser diode[J]. Optics Letters, 2013,38(16): 3040-3043.
[114] Pushkin A V, Migal E A, Tokita S, et al. Femtosecond graphene mode-locked Fe: ZnSe laser at 4.4 μm[J]. Optics Letters, 2020, 45(3): 738-741.
[115] Bowman S R, Condon N J, Oconnor S, et al. Growth and characterization of direct mid-IR laser materials (Invited Paper)[J]. Proceedings of SPIE, 2005: 135-140.
[116] Adams J J, Bibeau C, Page R H, et al. 4.0-4.5 μm lasing of Fe∶ZnSe below 180 K, a new mid-infrared laser material[J]. Optics Letters, 1999,24(23): 1720-1722.
[117] Bowman S R, Ganem J, Feldman B J, et al. Infrared laser characteristics of praseodymium-doped lanthanum trichloride[J]. IEEE Journal of Quantum Electronics, 1994,30(12): 2925-2928.
[118] Jelinkova H, Doroshenko M E, Osiko V V, et al. Dysprosium thiogallate laser: source of mid-infrared radiation at 2.4, 4.3, and 5.4 μm[J]. Applied Physics A, 2016,122(8): 1-8.
[121] Kaminskii A A, Butaeva T I, Ivanov A O, et al. New data on stimulated emission in crystals containing Er3+and Ho3+[J]. Pisma v Zhurnal Tekhnischeskoi Fiziki, 1976,2(1): 787-793.
[124] Ma J, Qin Z, Xie G, et al. Review of mid-infrared mode-locked laser sources in the 2.0 μm-3.5 μm spectral region[J]. Applied Physics Reviews, 2019,6(2): 021317.
[125] Luo H, Yang J, Liu F, et al. Watt-level gain-switched fiber laser at 3.46 μm[J]. Optics Express, 2019,27(2): 1367-1375.