[1] BAO X Y, CHEN L. Recent progress in distributed fiber optic sensors[J]. Sensors, 12, 8601-8639(2012).
[2] LIANG C S, BAI Q, YAN M, et al. A comprehensive study of optical frequency domain reflectometry[J]. IEEE Access, 9, 41647-41668(2021).
[4] YANG Y J, XIANG Y, BU A M, et al. Liquid-phase deposition of Al2O3 coating on quartz fiber for enhanced strength at elevated temperature[J]. Composite Interfaces, 29, 487-501(2022).
[5] LI P F, FU C L, ZHONG H J, et al. A nondestructive measurement method of optical fiber young’s modulus based on OFDR[J]. Sensors, 22, 1450(2022).
[6] ZHANG M, LIU Z H, MA Y W, et al. Gelatin-coated long period fiber grating humidity sensor with temperature compensation[J]. Optical Engineering, 61, 027104(2022).
[7] WANG Z, CHEN D L, YANG X C, et al. Temperature sensor of single-mode-no-core-single-mode fiber structure coated with PDMS[J]. Optical Fiber Technology, 68, 102793(2022).
[8] SERAJI F E, TOUTIAN G. Effect of temperature rise and hydrostatic pressure on microbending loss and refractive index change in double-coated optical fiber[J]. Progress in Quantum Electronics, 30, 317-331(2006).
[9] WANG X Y, SUN X Y, HU Y W, et al. Highly-sensitive fiber Bragg grating temperature sensors with metallic coatings[J]. Optik, 262, 169337(2022).
[10] HABISREUTHER T, HAILEMICHAEL E, ECKE W, et al. ORMOCER coated fiber-optic Bragg grating sensors at cryogenic temperatures[J]. IEEE Sensors Journal, 12, 13-16(2012).
[11] LIU Y Q, GUO Z Y, ZHANG Y, et al. Simultaneous pressure and temperature measurement with polymer-coated fibre Bragg grating[J]. Electronics Letters, 36, 564-566(2000).
[12] GU H D, DONG H J, ZHANG G Y, et al. Effects of polymer coatings on temperature sensitivity of brillouin frequency shift within double-coated fibers[J]. IEEE Sensors Journal, 13, 864-869(2013).
[13] LU X, SOTO M A, THÉVENAZ L. Impact of the fiber coating on the temperature response of distributed optical fiber sensors at cryogenic ranges[J]. Journal of Lightwave Technology, 36, 961-967(2018).
[14] KWON Y S, NAEEM K, JEON M Y, et al. Enhanced sensitivity of distributed-temperature sensor with Al-coated fiber based on OFDR[J]. Optical Fiber Technology, 48, 229-234(2019).
[16] FROGGATT M, MOORE J. High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter[J]. Applied Optics, 37, 1735-1740(1998).
[17] TUR M, SOVRAN I, BERGMAN A, et al. Structural health moniting of compositebased UAVs using simultaneous fiberoptic interrogation by static Rayleighbased distributed sensing dynamic fiber Bragg grating point senss[C]Proceedings of SPIE 9634, 24th International Conference on Optical Fibre Senss. Curitiba, Brazil: SPIE, 2015: 96340P.
[19] KREGER S T, GIFFD D K, FROGGATT M E, et al. High resolution distributed strain temperature measurements in single multimode fiber using sweptwavelength interferometry[C]Proceedings of Optical Fiber Senss 2006. Cancun Mexico: Optica Publishing Group, 2006: ThE42.
[20] BOUTEN P C P, BROER D J, JOCHEM C M G, et al. Optical fiber coatings: high modulus coatings for fibers with a low microbending sensitivity[J]. Polymer Engineering and Science, 29, 1172-1176(1989).
[21] MA G M, ZHOU H Y, LI Y B, et al. High-resolution temperature distribution measurement of GIL spacer based on OFDR and ultraweak FBGs[J]. IEEE Transactions on Instrumentation and Measurement, 69, 3866-3873(2020).