• Acta Photonica Sinica
  • Vol. 51, Issue 9, 0914004 (2022)
Meng LI1, Xin MENG1, Jinming HU1, Jingjing CHENG1、*, and Guilin MAO1、2
Author Affiliations
  • 1School of Physics and Electronic Engineering,Jiangsu Normal University,Xuzhou ,Jiangsu 221116,China
  • 2Jiangsu Key Laboratory of Advanced Laser Materials and Devices,Xuzhou ,Jiangsu 221116,China
  • show less
    DOI: 10.3788/gzxb20225109.0914004 Cite this Article
    Meng LI, Xin MENG, Jinming HU, Jingjing CHENG, Guilin MAO. 210~250 nm Tunable Narrow Linewidth Ti:Sapphire Laser[J]. Acta Photonica Sinica, 2022, 51(9): 0914004 Copy Citation Text show less
    References

    [1] J X MAO, P WALSH, P KROLL et al. Simulation of vacuum ultraviolet absorption spectra: paraffin, isoparaffin, olefin, naphthene, and aromatic hydrocarbon class compounds. Applied Spectroscopy, 74, 72-80(2020).

    [2] M GHOTBI, P TRABS, M BEUTLER. Generation of high-energy, sub-20-fs pulses in the deep ultraviolet by using spectral broadening during filamentation in argon. Optics Letters, 36, 463-465(2011).

    [3] Ruilan FAN, Fengrong BAO, Yongsheng WANG. Study on ultraviolet spectroscopy of halogenated benzoyl ferrocene. Spectroscopy and Spectral Analysis, 25, 601-603(2005).

    [4] Zhaorui MENG, Ning GAO. Ultraviolet spectroscopy analysis of organic compounds. Western Resources, 6, 179-182(2017).

    [5] Guofu CHEN, Yishan WANG, Lianjun YU et al. Experimental study on pulse oscillation of femtosecond ultraviolet laser. Acta Photonica Sinica, 30, 11-14(2001).

    [6] B JUNGBLUTH, J WUEPPEN, M VIERKOETTER et al. High repetition rate Ti:Sapphire laser system with nanosecond pulses and a tunability from the UV to the NIR(2006).

    [7] J F ZHU, W J LING, Z H WANG et al. High-energy picosecond near-vacuum ultraviolet pulses generated by sum-frequency mixing of an amplified Ti:sapphire laser. Applied Optics, 46, 6228-6231(2007).

    [8] S J ZHANG, Y BO, F F ZHANG et al. Picosecond 175~ 210 nm tunable deep-ultraviolet laser(2013).

    [9] C XU, S B DAI, C GUO et al. A high-pulse-energy high-beam-quality tunable Ti:Sapphire laser using a prism-dispersion cavity. Chinese Physics Letters, 34, 034206(2017).

    [10] A H SULAIMAN, M Z A KADIR, N M YUSOFF et al. Broad bandwidth SOA-based multiwavelength laser incorporating a bidirectional Lyot filter. Chinese Optics Letters, 16, 090603(2018).

    [11] Q ZHAO, L PEI, L Y WU et al. Wide tuning range and high OSNR self-seeded multi-wavelength Brillouin-erbium fiber laser based on a Lyot filter. Applied Optics, 57, 10474-10479(2018).

    [12] X F GUAN, J W WANG, Y Z ZHANG et al. Self-Q-switched and wavelength-tunable tungsten disulfide-based passively Q-switched Er:Y2O3 ceramic lasers. Photon Research, 6, 830-836(2018).

    [13] X J SUN, J WEI, W Z WANG et al. Realization of a continuous frequency-tuning Ti:sapphire laser with an intracavity locked etalon. Chinese Optics Letters, 13, 071401(2015).

    [14] J WEI, X C CAO, P X JIN et al. Diving angle optimization of BRF in a single-frequency continuous-wave wideband tunable titanium:sapphire laser. Optics Express, 29, 6714-6725(2021).

    [15] X LIU, H T HUANG, H Y ZHU et al. Widely tunable, narrow linewidth Tm: YAG ceramic laser with a volume Bragg grating. Chinese Optics Letters, 13, 061404(2015).

    [16] M HEMMER, Y JOLY, L GLEBOV et al. Volume bragg grating assisted broadband tunability and spectral narrowing of Ti:Sapphire oscillators. Optics Express, 17, 8212-8219(2009).

    [17] S T DAI, T JIANG, H C WU et al. Tunable narrow-linewidth 226 nm laser for hypersonic flow velocimetry. Optics Letters, 45, 2291-2294(2020).

    [18] R WANG, N WANG, H TENG et al. High-power tunable narrow-linewidth Ti:sapphire laser at repetition rate of 1kHz. Applied Optics, 51, 5527-5530(2012).

    [19] D G NIKITIN, O A BYALKOVSKIY, O I VERSHNIN et al. Sum frequency generation of UV laser radiation at 266nm in LBO crystal. Optics Letters, 41, 1660-1663(2016).

    [20] J PHILLIPS, S BANERJEE, K ERTEL et al. Stable high-energy, high-repetition-rate, frequency doubling in a large aperture temperature-controlled LBO at 515 nm. Optics Letters, 45, 2946-2949(2020).

    [21] T SHIMADA, K NAGASHIMA, S KOYAMA et al. Fabrication of walk-off compensating BBO devices with multiple thin plates using room-temperature bonding(2017).

    Meng LI, Xin MENG, Jinming HU, Jingjing CHENG, Guilin MAO. 210~250 nm Tunable Narrow Linewidth Ti:Sapphire Laser[J]. Acta Photonica Sinica, 2022, 51(9): 0914004
    Download Citation